ECA-PHV: Predicting human-virus protein-protein interactions through an interpretable model of effective channel attention mechanism

可解释性 计算机科学 人工智能 机制(生物学) 机器学习 计算生物学 数据挖掘 生物 哲学 认识论
作者
Minghui Wang,Jiali Lai,Jihua Jia,Fei Xu,Hongyan Zhou,Bin Yu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:247: 105103-105103
标识
DOI:10.1016/j.chemolab.2024.105103
摘要

The prediction of human-virus protein-protein interactions (human-virus PPIs) is significant for exploring the mechanisms of viral infection, making their prediction a necessary and practically valuable research topic. Since conventional methods for the determination of human-virus protein-protein interactions are very complex and expensive, the construction of models plays a crucial role. In this paper, we construct an interpretable model, ECA-PHV, to predict human-virus protein-protein interactions based on an effective channel attention mechanism. First, we utilize five coding modalities, namely AAC, DDE, MMI, CT, and GTPC, to extract the hidden biological information in protein sequences. Individual feature weights are then learned by using a differential evolutionary algorithm that employs weighted combinations to adequately represent various protein sequence information. Next, irrelevant features in multi-information fusion are removed by Group Lasso. Finally, the prediction model is constructed by combining effective channel attention, BiGRU, and 1D-CNN. Compared with existing models, the interpretability framework ECA-PHV proposed in this paper has competitive and stable predictive performance. This shows that our model can efficiently focus on important information about protein sequences. In conclusion, this study accelerates the exploration of human-virus protein-protein interactions and provides some insights of practical value for probing human-virus relationships.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肉哥完成签到,获得积分10
刚刚
FOODHUA完成签到,获得积分10
1秒前
1秒前
1秒前
枝桠发布了新的文献求助10
1秒前
YOLO完成签到 ,获得积分10
2秒前
2秒前
3秒前
小灰灰完成签到,获得积分10
4秒前
5秒前
5秒前
肉哥发布了新的文献求助10
5秒前
5秒前
孤僻发布了新的文献求助10
5秒前
学不完了完成签到 ,获得积分10
5秒前
小石头完成签到,获得积分10
6秒前
7秒前
王珺发布了新的文献求助10
9秒前
木头人完成签到,获得积分10
10秒前
ypljk完成签到,获得积分10
10秒前
害羞的可愁完成签到 ,获得积分10
11秒前
郑麻发布了新的文献求助10
12秒前
12秒前
LONG完成签到 ,获得积分10
13秒前
栗爷完成签到,获得积分0
13秒前
NexusExplorer应助丹丹采纳,获得10
14秒前
huangyanan0120完成签到,获得积分10
15秒前
不安溪灵完成签到,获得积分10
15秒前
喜悦的向日葵完成签到,获得积分10
16秒前
111发布了新的文献求助10
16秒前
17秒前
郑麻完成签到,获得积分10
17秒前
Garfield完成签到 ,获得积分10
18秒前
19秒前
酒九发布了新的文献求助10
20秒前
充电宝应助满地枫叶采纳,获得10
24秒前
小cc完成签到 ,获得积分0
24秒前
明亮无颜完成签到,获得积分10
24秒前
橘里完成签到,获得积分10
25秒前
zzz完成签到 ,获得积分10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137155
求助须知:如何正确求助?哪些是违规求助? 2788182
关于积分的说明 7784837
捐赠科研通 2444146
什么是DOI,文献DOI怎么找? 1299822
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011