ECA-PHV: Predicting human-virus protein-protein interactions through an interpretable model of effective channel attention mechanism

可解释性 计算机科学 人工智能 机制(生物学) 机器学习 计算生物学 数据挖掘 生物 哲学 认识论
作者
Minghui Wang,Jiali Lai,Jihua Jia,Fei Xu,Hongyan Zhou,Bin Yu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:247: 105103-105103
标识
DOI:10.1016/j.chemolab.2024.105103
摘要

The prediction of human-virus protein-protein interactions (human-virus PPIs) is significant for exploring the mechanisms of viral infection, making their prediction a necessary and practically valuable research topic. Since conventional methods for the determination of human-virus protein-protein interactions are very complex and expensive, the construction of models plays a crucial role. In this paper, we construct an interpretable model, ECA-PHV, to predict human-virus protein-protein interactions based on an effective channel attention mechanism. First, we utilize five coding modalities, namely AAC, DDE, MMI, CT, and GTPC, to extract the hidden biological information in protein sequences. Individual feature weights are then learned by using a differential evolutionary algorithm that employs weighted combinations to adequately represent various protein sequence information. Next, irrelevant features in multi-information fusion are removed by Group Lasso. Finally, the prediction model is constructed by combining effective channel attention, BiGRU, and 1D-CNN. Compared with existing models, the interpretability framework ECA-PHV proposed in this paper has competitive and stable predictive performance. This shows that our model can efficiently focus on important information about protein sequences. In conclusion, this study accelerates the exploration of human-virus protein-protein interactions and provides some insights of practical value for probing human-virus relationships.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
闾丘广缘发布了新的文献求助10
2秒前
我是老大应助mayberichard采纳,获得10
2秒前
3秒前
3秒前
3秒前
小可爱完成签到,获得积分10
4秒前
枫叶应助妍小猪采纳,获得10
5秒前
烟花应助妍小猪采纳,获得10
5秒前
隐形土豆完成签到,获得积分10
5秒前
浅渊发布了新的文献求助10
6秒前
985211发布了新的文献求助10
7秒前
我唉科研完成签到,获得积分10
7秒前
Wxx完成签到,获得积分10
7秒前
xiaocongx发布了新的文献求助10
8秒前
8秒前
JamesPei应助xuezha采纳,获得10
8秒前
8秒前
Owen应助123采纳,获得10
9秒前
10秒前
脑洞疼应助王雷采纳,获得10
10秒前
NexusExplorer应助LQL采纳,获得10
11秒前
zzzz完成签到,获得积分10
12秒前
12秒前
75464发布了新的文献求助10
13秒前
13秒前
14秒前
kksun完成签到,获得积分10
14秒前
16秒前
16秒前
luan发布了新的文献求助10
16秒前
Ben完成签到,获得积分10
17秒前
执着又蓝完成签到,获得积分20
18秒前
wang完成签到,获得积分10
18秒前
香蕉觅云应助落叶为谁殇采纳,获得10
19秒前
QWSS发布了新的文献求助10
20秒前
HDM发布了新的文献求助10
20秒前
20秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668230
求助须知:如何正确求助?哪些是违规求助? 3226593
关于积分的说明 9770416
捐赠科研通 2936503
什么是DOI,文献DOI怎么找? 1608642
邀请新用户注册赠送积分活动 759754
科研通“疑难数据库(出版商)”最低求助积分说明 735537