已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Empowering PET: harnessing deep learning for improved clinical insight

转化式学习 人工智能 深度学习 计算机科学 正电子发射断层摄影术 放射基因组学 数据科学 医学物理学 医学 无线电技术 核医学 心理学 教育学
作者
Alessia Artesani,Alessandro Bruno,Fabrizia Gelardi,Arturo Chiti
出处
期刊:European Radiology Experimental [Springer Nature]
卷期号:8 (1) 被引量:2
标识
DOI:10.1186/s41747-023-00413-1
摘要

Abstract This review aims to take a journey into the transformative impact of artificial intelligence (AI) on positron emission tomography (PET) imaging. To this scope, a broad overview of AI applications in the field of nuclear medicine and a thorough exploration of deep learning (DL) implementations in cancer diagnosis and therapy through PET imaging will be presented. We firstly describe the behind-the-scenes use of AI for image generation, including acquisition (event positioning, noise reduction though time-of-flight estimation and scatter correction), reconstruction (data-driven and model-driven approaches), restoration (supervised and unsupervised methods), and motion correction. Thereafter, we outline the integration of AI into clinical practice through the applications to segmentation, detection and classification, quantification, treatment planning, dosimetry, and radiomics/radiogenomics combined to tumour biological characteristics. Thus, this review seeks to showcase the overarching transformation of the field, ultimately leading to tangible improvements in patient treatment and response assessment. Finally, limitations and ethical considerations of the AI application to PET imaging and future directions of multimodal data mining in this discipline will be briefly discussed, including pressing challenges to the adoption of AI in molecular imaging such as the access to and interoperability of huge amount of data as well as the “black-box” problem, contributing to the ongoing dialogue on the transformative potential of AI in nuclear medicine. Relevance statement AI is rapidly revolutionising the world of medicine, including the fields of radiology and nuclear medicine. In the near future, AI will be used to support healthcare professionals. These advances will lead to improvements in diagnosis, in the assessment of response to treatment, in clinical decision making and in patient management. Key points • Applying AI has the potential to enhance the entire PET imaging pipeline. • AI may support several clinical tasks in both PET diagnosis and prognosis. • Interpreting the relationships between imaging and multiomics data will heavily rely on AI. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王楚皓发布了新的文献求助10
刚刚
吴彦祖发布了新的文献求助10
1秒前
3秒前
搜集达人应助李昕123采纳,获得10
3秒前
如夏花发布了新的文献求助30
4秒前
uranus完成签到,获得积分10
4秒前
5秒前
宋鹏炜完成签到,获得积分20
5秒前
5秒前
科研通AI5应助peekaboo采纳,获得10
6秒前
上官若男应助爱听歌蜗牛采纳,获得10
7秒前
文艺猫咪完成签到,获得积分10
7秒前
小小飞xxf完成签到 ,获得积分10
9秒前
含蓄藏花完成签到,获得积分10
9秒前
牛牛牛刘完成签到,获得积分10
10秒前
背理完成签到,获得积分10
10秒前
含蓄藏花发布了新的文献求助10
11秒前
aliu完成签到,获得积分10
12秒前
落山姬完成签到,获得积分10
16秒前
tejing1158完成签到 ,获得积分10
17秒前
胖丁应助含蓄藏花采纳,获得10
18秒前
龟龟完成签到 ,获得积分10
18秒前
Lucas应助王楚皓采纳,获得10
19秒前
Hello应助Enthusiastic采纳,获得10
19秒前
宋晴也完成签到,获得积分10
19秒前
如夏花完成签到,获得积分10
20秒前
熊大完成签到,获得积分10
21秒前
22秒前
25秒前
黄耀完成签到,获得积分10
26秒前
何何完成签到 ,获得积分10
26秒前
26秒前
光亮千易完成签到,获得积分10
26秒前
29秒前
lqmentu完成签到,获得积分10
30秒前
qifeng发布了新的文献求助10
31秒前
Sylvia_J完成签到 ,获得积分10
32秒前
藤椒辣鱼应助andrele采纳,获得10
32秒前
Veronica完成签到,获得积分10
34秒前
小二郎应助sherrinford采纳,获得10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566475
求助须知:如何正确求助?哪些是违规求助? 3139182
关于积分的说明 9430981
捐赠科研通 2840041
什么是DOI,文献DOI怎么找? 1560936
邀请新用户注册赠送积分活动 730090
科研通“疑难数据库(出版商)”最低求助积分说明 717797