Leveraging large language models for predictive chemistry

计算机科学 化学
作者
Kevin Maik Jablonka,Philippe Schwaller,Andres Ortega‐Guerrero,Berend Smit
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:6 (2): 161-169 被引量:64
标识
DOI:10.1038/s42256-023-00788-1
摘要

Abstract Machine learning has transformed many fields and has recently found applications in chemistry and materials science. The small datasets commonly found in chemistry sparked the development of sophisticated machine learning approaches that incorporate chemical knowledge for each application and, therefore, require specialized expertise to develop. Here we show that GPT-3, a large language model trained on vast amounts of text extracted from the Internet, can easily be adapted to solve various tasks in chemistry and materials science by fine-tuning it to answer chemical questions in natural language with the correct answer. We compared this approach with dedicated machine learning models for many applications spanning the properties of molecules and materials to the yield of chemical reactions. Surprisingly, our fine-tuned version of GPT-3 can perform comparably to or even outperform conventional machine learning techniques, in particular in the low-data limit. In addition, we can perform inverse design by simply inverting the questions. The ease of use and high performance, especially for small datasets, can impact the fundamental approach to using machine learning in the chemical and material sciences. In addition to a literature search, querying a pre-trained large language model might become a routine way to bootstrap a project by leveraging the collective knowledge encoded in these foundation models, or to provide a baseline for predictive tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助克林沙星采纳,获得10
1秒前
1秒前
淡然的衣完成签到 ,获得积分10
1秒前
天天快乐应助yyc采纳,获得10
3秒前
4秒前
科研小白发布了新的文献求助10
4秒前
友好绿柏完成签到,获得积分10
4秒前
万能图书馆应助赤侯采纳,获得10
5秒前
萝卜牛腩发布了新的文献求助30
5秒前
轻松小之发布了新的文献求助10
7秒前
7秒前
黑去吗工完成签到,获得积分10
7秒前
8秒前
粗犷的沛容完成签到,获得积分0
8秒前
9秒前
9秒前
9秒前
9秒前
科研通AI2S应助xxx采纳,获得10
12秒前
黑去吗工发布了新的文献求助10
12秒前
lumous发布了新的文献求助10
13秒前
15秒前
16秒前
17秒前
18秒前
19秒前
22秒前
asd发布了新的文献求助30
22秒前
22秒前
23秒前
GJJ发布了新的文献求助10
23秒前
完美世界应助科研通管家采纳,获得10
23秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
852应助科研通管家采纳,获得10
23秒前
英姑应助科研通管家采纳,获得10
23秒前
斯文败类应助科研通管家采纳,获得10
23秒前
隐形曼青应助科研通管家采纳,获得10
24秒前
打打应助科研通管家采纳,获得10
24秒前
月光咸鱼完成签到,获得积分20
24秒前
今后应助科研通管家采纳,获得10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310425
求助须知:如何正确求助?哪些是违规求助? 2943334
关于积分的说明 8513915
捐赠科研通 2618566
什么是DOI,文献DOI怎么找? 1431182
科研通“疑难数据库(出版商)”最低求助积分说明 664398
邀请新用户注册赠送积分活动 649599