生物相容性
纳米颗粒
药物输送
纳米医学
纳米载体
纳米技术
化学
毒品携带者
材料科学
有机化学
作者
Yuman Dong,Jieru Li,Tao Wang,Yiwei Dai,Shimeng Guo,Liangtao Zhao,Pengcheng Du
标识
DOI:10.1016/j.jiec.2024.02.031
摘要
Self-assembled supramolecular nanoparticles possess several advantages, including convenient preparation process, high controllability, stability, and multifunctionality, which make them highly beneficial as drug-carriers in field of drug delivery. Size of nano-carriers plays a crucial role in their performance, affecting their ability for long-term circulation and deep penetration into tumor tissues within biological systems. In this study, we present a simple one-step self-assembly strategy for constructing biocompatible and pH-sensitive polyphenol-based nanoparticles for high-efficiency tumor therapy. The self-assembled DOX@F127-TA nanoparticles are achieved through a combination of hydrogen bonding and hydrophobic interactions. The Pluronic F127 (F127) and tannic acid (TA) endow high biocompatibility and satisfactory safety to nano-drug carriers. By adjusting DOX content, DOX@F127-TA nanoparticles are successfully prepared with advantages of high drug content, pH-sensitive, high stability and small size. Additionally, the nanoparticles exhibit low hemolysis performance and electronegativity, which contribute to their long-term circulation stability in vivo. Furthermore, in vitro cytotoxicity, cellular uptake and patient-derived organoids were utilized to evaluate the efficacy of the DOX@F127-TA. The results demonstrate efficient endocytosis, successful organoid delivery, and remarkable anti-tumor effects, while exhibiting minimal toxicity to normal cells. Overall, DOX@F127-TA nanoparticles demonstrate great potential as a promising drug delivery platform for high-efficient cancer therapy and practical application.
科研通智能强力驱动
Strongly Powered by AbleSci AI