Motion intention recognition of the affected hand based on the sEMG and improved DenseNet network

人工智能 计算机科学 模式识别(心理学) 卷积神经网络 运动(物理) 特征(语言学) 短时傅里叶变换 肌电图 特征提取 语音识别 傅里叶变换 傅里叶分析 数学 物理医学与康复 医学 数学分析 哲学 语言学
作者
Qunfeng Niu,Chuanlei Zhang,Yang Niu,Kunming Jia,Guangda Fan,Ruowei Gui,Li Wang
出处
期刊:Heliyon [Elsevier]
卷期号:10 (5): e26763-e26763 被引量:2
标识
DOI:10.1016/j.heliyon.2024.e26763
摘要

The key to sEMG (surface electromyography)-based control of robotic hands is the utilization of sEMG signals from the affected hand of amputees to infer their motion intentions. With the advancements in deep learning, researchers have successfully developed viable solutions for CNN (Convolutional Neural Network)-based gesture recognition. However, most studies have primarily concentrated on utilizing sEMG data from the hands of healthy subjects, often relying on high-dimensional feature vectors obtained from a substantial number of electrodes. This approach has yielded high-performing sEMG recognition systems but has failed to consider the considerable inconvenience that the abundance of electrodes poses to the daily lives and work of patients. In this paper, we focused on transradial amputees and used sEMG data from the Ninapro DB3 database as our dataset. Firstly, we introduce a STFT (Short-Time Fourier Transform)-based time-frequency feature fusion map for sEMG. This map includes both time-frequency features and the time-frequency localization of sEMG signals. Secondly, we propose an Improved DenseNet (Dense Convolutional Network) model for recognizing motion intentions in the affected hand of amputees based on their sEMG signals. Finally, addressing the issue of optimizing the number of electrodes carried by amputees, we introduce the PCMIRR (Pearson Correlation and Motion Intention Recognition Rate) algorithm. This algorithm optimizes the number of channels by considering the Pearson correlation between the sEMG channels of amputees and the recognition rate of motion intentions in the affected hand based on single-channel sEMG data. The experimental results reveal that the recognition accuracy, recall, and F1 score achieved by the Improved DenseNet model were 93.82%, 93.61%, and 93.65%, respectively. When the number of electrodes was optimized to 8, the recognition accuracy reached 94.50%. In summary, this paper ultimately attained precise recognition of motion intentions in amputees' affected hands while utilizing the minimum number of sEMG channels. This method offers a novel approach to sEMG-based control of bionic robotic hands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荒野小蚂蚁完成签到,获得积分10
刚刚
Xulun发布了新的文献求助10
刚刚
人间草木完成签到,获得积分10
刚刚
Nico多多看paper完成签到,获得积分10
1秒前
1秒前
dandan完成签到,获得积分10
2秒前
香蕉觅云应助哈哈采纳,获得10
2秒前
2秒前
liuqi67完成签到,获得积分10
3秒前
高瑞完成签到,获得积分10
3秒前
欢喜的雁枫给欢喜的雁枫的求助进行了留言
3秒前
爽哥发布了新的文献求助10
3秒前
tong发布了新的文献求助10
4秒前
Gin完成签到,获得积分10
4秒前
6秒前
XT完成签到 ,获得积分10
6秒前
宣孤菱完成签到,获得积分10
6秒前
Jay完成签到,获得积分10
6秒前
CipherSage应助corner采纳,获得10
6秒前
fxfcpu完成签到,获得积分10
7秒前
彭于彦祖完成签到,获得积分0
7秒前
薛定谔的猫完成签到,获得积分10
7秒前
0gg完成签到,获得积分10
8秒前
温暖的醉蓝完成签到,获得积分10
8秒前
三柘完成签到,获得积分10
9秒前
10秒前
Mintkarla完成签到,获得积分10
11秒前
倪羽佳发布了新的文献求助10
11秒前
鳗鱼完成签到,获得积分10
11秒前
小柒发布了新的文献求助10
13秒前
ProfWang完成签到,获得积分10
13秒前
星辰大海应助短短长又长采纳,获得10
13秒前
Lwxbb完成签到,获得积分10
14秒前
互助遵法尚德应助哈哈采纳,获得10
16秒前
怕孤单的若颜完成签到,获得积分10
16秒前
lailight完成签到,获得积分10
16秒前
虚幻的凤完成签到,获得积分10
17秒前
一一完成签到,获得积分10
17秒前
小糊涂仙完成签到,获得积分10
18秒前
爱笑完成签到,获得积分10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150742
求助须知:如何正确求助?哪些是违规求助? 2802264
关于积分的说明 7846871
捐赠科研通 2459614
什么是DOI,文献DOI怎么找? 1309322
科研通“疑难数据库(出版商)”最低求助积分说明 628871
版权声明 601757