亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual-Mode Learning for Multi-Dataset X-Ray Security Image Detection

计算机科学 人工智能 深度学习 模式识别(心理学) 机器学习 过程(计算) 模式(计算机接口) 分类器(UML) 特征(语言学) 特征学习 特征向量 特征提取 上下文图像分类 图像(数学) 数据挖掘 哲学 语言学 操作系统
作者
Fenghong Yang,Runqing Jiang,Yan Yan,Jing‐Hao Xue,Biao Wang,Hanzi Wang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 3510-3524 被引量:2
标识
DOI:10.1109/tifs.2024.3364368
摘要

With the recent advance of deep learning, a large number of methods have been developed for prohibited item detection in X-ray security images. Generally, these methods train models on a single X-ray image dataset that may contain only limited categories of prohibited items. To detect more prohibited items, it is desirable to train a model on the multi-dataset that is constructed by combining multiple datasets. However, directly applying existing methods to the multi-dataset cannot guarantee good performance because of the large domain discrepancy between datasets and the occlusion in images. To address the above problems, we propose a novel Dual-Mode Learning Network (DML-Net) to effectively detect all the prohibited items in the multi-dataset. In particular, we develop an enhanced RetinaNet as the architecture of DML-Net, where we introduce a lattice appearance enhanced sub-net to enhance appearance representations. Such a way benefits the detection of occluded prohibited items. Based on the enhanced RetinaNet, the learning process of DML-Net involves both common mode learning (detecting the common prohibited items across datasets) and unique mode learning (detecting the unique prohibited items in each dataset). For common mode learning, we introduce an adversarial prototype alignment module to align the feature prototypes from different datasets in the domain-invariant feature space. For unique mode learning, we take advantage of feature distillation to enforce the student model to mimic the features extracted by multiple pre-trained teacher models. By tightly combining and jointly training the dual modes, our DML-Net method successfully eliminates the domain discrepancy and exhibits superior model capacity on the multi-dataset. Extensive experimental results on several combined X-ray image datasets demonstrate the effectiveness of our method against several state-of-the-art methods. Our code is available at https://github.com/vampirename/dmlnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nenoaowu应助Chivalry0219采纳,获得30
6秒前
34秒前
琉璃应助科研通管家采纳,获得20
46秒前
琉璃应助科研通管家采纳,获得20
46秒前
琉璃应助科研通管家采纳,获得20
46秒前
Joyce完成签到,获得积分10
1分钟前
Lucas应助Desserts采纳,获得10
1分钟前
1分钟前
勤劳斩发布了新的文献求助10
1分钟前
1分钟前
Desserts发布了新的文献求助10
1分钟前
共享精神应助Desserts采纳,获得10
1分钟前
开心太阳应助温暖的夏波采纳,获得10
1分钟前
曲书文发布了新的文献求助10
1分钟前
曲书文完成签到,获得积分10
2分钟前
2分钟前
ding应助温暖的夏波采纳,获得10
2分钟前
华仔应助包容的凌雪采纳,获得10
2分钟前
2分钟前
Desserts发布了新的文献求助10
2分钟前
2分钟前
2分钟前
琉璃应助科研通管家采纳,获得20
2分钟前
琉璃应助科研通管家采纳,获得20
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
2分钟前
miki完成签到,获得积分10
3分钟前
董H完成签到,获得积分10
3分钟前
3分钟前
jeff完成签到,获得积分10
3分钟前
3分钟前
荒1完成签到,获得积分10
3分钟前
Owen应助包容的凌雪采纳,获得10
4分钟前
Desserts发布了新的文献求助10
4分钟前
4分钟前
4分钟前
zss完成签到 ,获得积分10
4分钟前
4分钟前
琉璃应助科研通管家采纳,获得20
4分钟前
琉璃应助科研通管家采纳,获得20
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4973734
求助须知:如何正确求助?哪些是违规求助? 4229191
关于积分的说明 13172248
捐赠科研通 4018060
什么是DOI,文献DOI怎么找? 2198617
邀请新用户注册赠送积分活动 1211315
关于科研通互助平台的介绍 1126352