已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dual-Mode Learning for Multi-Dataset X-Ray Security Image Detection

计算机科学 人工智能 深度学习 模式识别(心理学) 机器学习 过程(计算) 模式(计算机接口) 分类器(UML) 特征(语言学) 特征学习 特征向量 特征提取 上下文图像分类 图像(数学) 数据挖掘 哲学 语言学 操作系统
作者
Fenghong Yang,Runqing Jiang,Yan Yan,Jing‐Hao Xue,Biao Wang,Hanzi Wang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 3510-3524 被引量:2
标识
DOI:10.1109/tifs.2024.3364368
摘要

With the recent advance of deep learning, a large number of methods have been developed for prohibited item detection in X-ray security images. Generally, these methods train models on a single X-ray image dataset that may contain only limited categories of prohibited items. To detect more prohibited items, it is desirable to train a model on the multi-dataset that is constructed by combining multiple datasets. However, directly applying existing methods to the multi-dataset cannot guarantee good performance because of the large domain discrepancy between datasets and the occlusion in images. To address the above problems, we propose a novel Dual-Mode Learning Network (DML-Net) to effectively detect all the prohibited items in the multi-dataset. In particular, we develop an enhanced RetinaNet as the architecture of DML-Net, where we introduce a lattice appearance enhanced sub-net to enhance appearance representations. Such a way benefits the detection of occluded prohibited items. Based on the enhanced RetinaNet, the learning process of DML-Net involves both common mode learning (detecting the common prohibited items across datasets) and unique mode learning (detecting the unique prohibited items in each dataset). For common mode learning, we introduce an adversarial prototype alignment module to align the feature prototypes from different datasets in the domain-invariant feature space. For unique mode learning, we take advantage of feature distillation to enforce the student model to mimic the features extracted by multiple pre-trained teacher models. By tightly combining and jointly training the dual modes, our DML-Net method successfully eliminates the domain discrepancy and exhibits superior model capacity on the multi-dataset. Extensive experimental results on several combined X-ray image datasets demonstrate the effectiveness of our method against several state-of-the-art methods. Our code is available at https://github.com/vampirename/dmlnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助MADMAX采纳,获得10
刚刚
甜甜甜完成签到 ,获得积分10
1秒前
暗号完成签到 ,获得积分10
3秒前
qiao发布了新的文献求助10
3秒前
WXHL完成签到 ,获得积分10
4秒前
宇宇完成签到 ,获得积分10
7秒前
逃离地球完成签到 ,获得积分10
7秒前
Jupiter完成签到,获得积分10
7秒前
曾经小伙完成签到 ,获得积分10
7秒前
星辉斑斓完成签到,获得积分10
8秒前
12345发布了新的文献求助10
11秒前
潇洒的语蝶完成签到 ,获得积分10
12秒前
lalala完成签到 ,获得积分10
12秒前
Singularity应助儒雅的冷松采纳,获得10
12秒前
cjx完成签到,获得积分10
15秒前
15秒前
巨大的小侠完成签到 ,获得积分10
17秒前
oydent应助俞无声采纳,获得10
18秒前
嘀嘀菇菇完成签到 ,获得积分10
18秒前
蓝桉完成签到 ,获得积分10
19秒前
彭于晏应助MERCURY采纳,获得10
19秒前
left_right发布了新的文献求助10
19秒前
活力的小猫咪完成签到 ,获得积分10
19秒前
20秒前
小晖晖完成签到,获得积分10
20秒前
精明芷巧完成签到 ,获得积分10
20秒前
22秒前
平常远山发布了新的文献求助10
22秒前
你泽完成签到,获得积分10
22秒前
stella发布了新的文献求助10
24秒前
玛卡巴卡完成签到 ,获得积分10
25秒前
迅速的幻雪完成签到 ,获得积分10
25秒前
left_right完成签到,获得积分10
25秒前
gwenjing完成签到,获得积分10
26秒前
落叶完成签到,获得积分10
27秒前
Yam呀完成签到 ,获得积分10
27秒前
28秒前
only111完成签到 ,获得积分10
29秒前
ChouNic完成签到 ,获得积分10
29秒前
kkk完成签到 ,获得积分10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466686
求助须知:如何正确求助?哪些是违规求助? 3059468
关于积分的说明 9066545
捐赠科研通 2749969
什么是DOI,文献DOI怎么找? 1508797
科研通“疑难数据库(出版商)”最低求助积分说明 697094
邀请新用户注册赠送积分活动 696888