Thermal runaway evolution of a 280 Ah lithium-ion battery with LiFePO4 as the cathode for different heat transfer modes constructed by mechanical abuse

热失控 材料科学 热传导 阴极 渗透(战争) 电池(电) 热的 传热 复合材料 核工程 机械 热力学 化学 物理 工程类 物理化学 功率(物理) 运筹学
作者
Zhixiang Cheng,Chengdong Wang,Wenxin Mei,Peng Qin,Junyuan Li,Qingsong Wang
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:93: 32-45 被引量:34
标识
DOI:10.1016/j.jechem.2024.01.073
摘要

Lithium iron phosphate batteries have been increasingly utilized in recent years because their higher safety performance can improve the increasing trend of recurring thermal runaway accidents. However, the safety performance and mechanism of high-capacity lithium iron phosphate batteries under internal short-circuit challenges remain to be explored. This work analyzes the thermal runaway evolution of high-capacity LiFePO4 batteries under different internal heat transfer modes, which are controlled by different penetration modes. Two penetration cases involving complete penetration and incomplete penetration were detected during the test, and two modes were performed incorporating nails that either remained or were removed after penetration to comprehensively reveal the thermal runaway mechanism. A theoretical model of microcircuits and internal heat conduction is also established. The results indicated three thermal runaway evolution processes for high-capacity batteries, which corresponded to the experimental results of thermal equilibrium, single thermal runaway, and two thermal runaway events. The difference in heat distribution in the three phenomena is determined based on the microstructure and material structure near the pinhole. By controlling the heat dissipation conditions, the time interval between two thermal runaway events can be delayed from 558 to 1417 s, accompanied by a decrease in the concentration of in-situ gas production during the second thermal runaway event.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助LJM采纳,获得10
刚刚
1秒前
完美世界应助lurongjun采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
善良的火完成签到 ,获得积分10
2秒前
3秒前
3秒前
致念完成签到,获得积分20
3秒前
alv发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
徐甜发布了新的文献求助10
6秒前
6秒前
cuarzn完成签到,获得积分10
6秒前
TXQ完成签到,获得积分10
7秒前
清爽遥发布了新的文献求助30
7秒前
哀酱完成签到,获得积分10
7秒前
科研通AI6应助心动采纳,获得10
8秒前
8秒前
怪怪完成签到 ,获得积分20
8秒前
cuarzn发布了新的文献求助10
9秒前
10秒前
酷波er应助郭盾采纳,获得10
11秒前
脑洞疼应助刘mou采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
12秒前
lilili应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得30
12秒前
烟花应助科研通管家采纳,获得10
12秒前
lilili应助科研通管家采纳,获得150
12秒前
英姑应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得50
13秒前
Criminology34应助科研通管家采纳,获得10
13秒前
13秒前
CodeCraft应助股份我采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5158967
求助须知:如何正确求助?哪些是违规求助? 4353615
关于积分的说明 13555988
捐赠科研通 4197142
什么是DOI,文献DOI怎么找? 2301953
邀请新用户注册赠送积分活动 1301933
关于科研通互助平台的介绍 1247023