Quantitative analysis of molecular transport in the extracellular space using physics-informed neural network

扩散 代表(政治) 计算机科学 空格(标点符号) 生物系统 分子扩散 物理 统计物理学 生物 工程类 操作系统 法学 公制(单位) 政治学 热力学 政治 运营管理
作者
Jiayi Xie,Hongfeng Li,Shaoyi Su,Jin Cheng,Qingrui Cai,Hanbo Tan,Lingyun Zu,Xiaobo Qu,Hongbin Han
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108133-108133 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108133
摘要

The brain extracellular space (ECS), an irregular, extremely tortuous nanoscale space located between cells or between cells and blood vessels, is crucial for nerve cell survival. It plays a pivotal role in high-level brain functions such as memory, emotion, and sensation. However, the specific form of molecular transport within the ECS remain elusive. To address this challenge, this paper proposes a novel approach to quantitatively analyze the molecular transport within the ECS by solving an inverse problem derived from the advection-diffusion equation (ADE) using a physics-informed neural network (PINN). PINN provides a streamlined solution to the ADE without the need for intricate mathematical formulations or grid settings. Additionally, the optimization of PINN facilitates the automatic computation of the diffusion coefficient governing long-term molecule transport and the velocity of molecules driven by advection. Consequently, the proposed method allows for the quantitative analysis and identification of the specific pattern of molecular transport within the ECS through the calculation of the Péclet number. Experimental validation on two datasets of magnetic resonance images (MRIs) captured at different time points showcases the effectiveness of the proposed method. Notably, our simulations reveal identical molecular transport patterns between datasets representing rats with tracer injected into the same brain region. These findings highlight the potential of PINN as a promising tool for comprehensively exploring molecular transport within the ECS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
儒雅沛菡发布了新的文献求助10
3秒前
4秒前
4秒前
烟花应助小白采纳,获得20
6秒前
8秒前
9秒前
落后的怀柔完成签到,获得积分10
9秒前
10秒前
10秒前
斯文败类应助ycg采纳,获得10
10秒前
墨尘发布了新的文献求助10
11秒前
11秒前
fuiee完成签到,获得积分10
13秒前
Jasper应助QTQ采纳,获得10
13秒前
13秒前
jorgan完成签到,获得积分10
14秒前
14秒前
江洋大盗发布了新的文献求助10
15秒前
懒虫儿坤发布了新的文献求助10
15秒前
lilili发布了新的文献求助10
16秒前
yolo完成签到,获得积分10
16秒前
VX完成签到,获得积分10
16秒前
18秒前
白华苍松发布了新的文献求助10
18秒前
BINGBING1230发布了新的文献求助10
21秒前
00完成签到,获得积分10
22秒前
23秒前
传奇3应助我问问采纳,获得10
24秒前
24秒前
传奇3应助懒虫儿坤采纳,获得10
24秒前
科研通AI6应助yolo采纳,获得10
25秒前
26秒前
氦hai发布了新的文献求助10
26秒前
26秒前
彭于晏应助伯克利芙蓉王采纳,获得10
27秒前
斯文败类应助gexiaoyang采纳,获得10
28秒前
清爽的绫完成签到,获得积分10
28秒前
30秒前
orixero应助安琦采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537866
求助须知:如何正确求助?哪些是违规求助? 4625252
关于积分的说明 14595177
捐赠科研通 4565743
什么是DOI,文献DOI怎么找? 2502625
邀请新用户注册赠送积分活动 1481106
关于科研通互助平台的介绍 1452360