清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An Automatic Framework for Detecting Autism Spectrum Disorder From EEG Signals Using TFD

光谱图 脑电图 自闭症谱系障碍 自闭症 卷积(计算机科学) 转化(遗传学) 短时傅里叶变换 时频分析 小波 计算机科学 语音识别 水准点(测量) 卷积神经网络 分割 心理学 人工神经网络 模式识别(心理学) 人工智能 傅里叶变换 神经科学 数学 发展心理学 计算机视觉 傅里叶分析 滤波器(信号处理) 数学分析 基因 化学 生物化学 地理 大地测量学
作者
Rajveer Singh Lalawat,Varun Bajaj
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (7): 10632-10639 被引量:2
标识
DOI:10.1109/jsen.2024.3362341
摘要

Autism Spectrum Disorder (ASD) is a intricate neuro developmental disorder with many neurological problems. Social interaction and communication issues, repetitive behaviours, and limited interests are its main symptoms. Manual ASD diagnosis testing is prone to human error, time-consuming, and difficult owing to contamination from a number of factors. Electroencephalogram (EEG) signal are extensively utilised to identify ASD as they represent brain abnormalities. This study employed a novel method that included pre-processing, segmentation, Time-frequency distribution (TFD) of various algorithms such as short time fourier transformation (STFT), continuous wavelet transformation (CWT), and smoothed pseudo-Wigner-Ville distribution (SPWVD), which produced corresponding spectrograms, scalograms, and SPWVD-TFD. These TFD are introduced into the DenseNet-121 and ResNet-101 pre-trained (ImageNet data-set) models, and then subsequently fed into the proposed ASD-Net. Deep learning networks (DLM) models were utilised to identify ASD and Normal subject using these TFD images. We acquired a 97.35% mean accuracy utilising the SPWVD-based TFD and ASD-Net model. In compared to the benchmark DenseNet-121 and ResNet-101, the developed convolution neural network (CNN) model with five convolution layers not only needs less learnable parameters but is also computationally efficient and quick.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灿烂而孤独的八戒完成签到 ,获得积分0
5秒前
量子星尘发布了新的文献求助10
6秒前
18秒前
BinBlues完成签到,获得积分10
18秒前
23秒前
38秒前
vicky完成签到 ,获得积分10
53秒前
冷傲半邪完成签到,获得积分10
1分钟前
1分钟前
nuliguan完成签到 ,获得积分10
1分钟前
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
zpc猪猪完成签到,获得积分10
2分钟前
2分钟前
fabius0351完成签到 ,获得积分10
2分钟前
如歌完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
003发布了新的社区帖子
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
Archer发布了新的文献求助10
6分钟前
彭于晏应助003采纳,获得10
6分钟前
6分钟前
003发布了新的文献求助10
6分钟前
6分钟前
量子星尘发布了新的文献求助30
6分钟前
Archer完成签到,获得积分10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596369
求助须知:如何正确求助?哪些是违规求助? 4008305
关于积分的说明 12409093
捐赠科研通 3687302
什么是DOI,文献DOI怎么找? 2032309
邀请新用户注册赠送积分活动 1065560
科研通“疑难数据库(出版商)”最低求助积分说明 950863