Machine learning and deep learning for user authentication and authorization in cybersecurity: A state-of-the-art review

计算机安全 计算机科学 授权 认证(法律) 国家(计算机科学) 深度学习 人工智能 程序设计语言
作者
Zinniya Taffannum Pritee,Mehedi Hasan Anik,Saida Binta Alam,Jamin Rahman Jim,Md. Mohsin Kabir,M. F. Mridha
出处
期刊:Computers & Security [Elsevier]
卷期号:: 103747-103747 被引量:3
标识
DOI:10.1016/j.cose.2024.103747
摘要

In the continuously developing field of cyber security, user authentication and authorization play a vital role in protecting personal information and digital assets from unauthorized use. As the field of cyber security expands, traditional user authentication and authorization approaches are not enough to prevent unauthorized access to personal information. Therefore, Machine Learning and Deep Learning models are introduced in cybersecurity. To assist researchers and cybersecurity experts in their research endeavours, a comprehensive and informative study is required covering the state-of-the-art advancements. Therefore, this research aimed to explore the field of Machine Learning and Deep Learning-based user authentication and authorization. More specifically, this paper intends to explore the diverse application domains of Machine Learning and Deep Learning-based user authentication and authorization. The paper also analyzes the commonly used datasets, pre-processing methods and Machine Learning and Deep Learning algorithms in user authentication and authorization. After that, this study conducts a thorough and detailed examination of some state-of-the-art articles' results and experimental details to enhance comprehension of the present advancements. Finally, the study engages in a comprehensive discussion concerning the various challenges encountered and outlines potential avenues for future research. This systematic review provides an all-encompassing overview of Machine Learning and Deep Learning-based user authentication and authorization, covering its application domains, models, analysis of state-of-the-art results, challenges, and research directions. It serves as a valuable resource for interdisciplinary studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干的钻石完成签到,获得积分10
刚刚
开心市民发布了新的文献求助10
刚刚
刚刚
647应助王硕硕采纳,获得30
4秒前
5秒前
科目三应助小明采纳,获得10
6秒前
传奇3应助moralz采纳,获得10
6秒前
jazzmantan发布了新的文献求助10
6秒前
linlin8229完成签到,获得积分10
8秒前
9秒前
10秒前
今后应助ZYL采纳,获得10
11秒前
12秒前
13秒前
nowfitness完成签到,获得积分10
13秒前
从容芮应助王硕硕采纳,获得10
14秒前
14秒前
14秒前
喜宝发布了新的文献求助10
15秒前
小羊要加油完成签到,获得积分20
15秒前
hhh发布了新的文献求助10
16秒前
科研通AI2S应助chen采纳,获得30
19秒前
HH1202完成签到,获得积分10
19秒前
not完成签到,获得积分10
19秒前
加菲丰丰应助ciri采纳,获得40
19秒前
20秒前
大冬瓜完成签到,获得积分10
20秒前
小马111发布了新的文献求助10
20秒前
领导范儿应助w1采纳,获得10
22秒前
无色热带鱼完成签到,获得积分10
23秒前
ZYL发布了新的文献求助10
26秒前
善学以致用应助潇飞天下采纳,获得10
26秒前
26秒前
27秒前
王硕硕发布了新的文献求助10
27秒前
一只鱼完成签到,获得积分10
28秒前
果果发布了新的文献求助10
30秒前
31秒前
粗心的香芦完成签到,获得积分10
31秒前
32秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 500
Natural History of Mantodea 螳螂的自然史 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124660
求助须知:如何正确求助?哪些是违规求助? 2774994
关于积分的说明 7724945
捐赠科研通 2430508
什么是DOI,文献DOI怎么找? 1291144
科研通“疑难数据库(出版商)”最低求助积分说明 622083
版权声明 600323