Shock wave prediction in transonic flow fields using domain-informed probabilistic deep learning

跨音速 计算机科学 空气动力学 冲击波 休克(循环) 算法 机械 物理 医学 内科学
作者
Bilal Mufti,Anindya Bhaduri,Sayan Ghosh,Liping Wang,Dimitri N. Mavris
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (1) 被引量:6
标识
DOI:10.1063/5.0185370
摘要

Transonic flow fields are marked by shock waves of varying strength and location and are crucial for the aerodynamic design and optimization of high-speed transport aircraft. While deep learning methods offer the potential for predicting these fields, their deterministic outputs often lack predictive uncertainty. Moreover, their accuracy, especially near critical shock regions, needs better quantification. In this paper, we introduce a domain-informed probabilistic (DIP) deep learning framework tailored for predicting transonic flow fields with shock waves called DIP-ShockNet. This methodology utilizes Monte Carlo dropout to estimate predictive uncertainty and enhances flow-field predictions near the wall region by employing the inverse wall distance function-based input representation of the aerodynamic flow field. The obtained results are benchmarked against the signed distance function and the geometric mask input representations. The proposed framework further improves prediction accuracy in shock wave areas using a domain-informed loss function. To quantify the accuracy of our shock wave predictions, we developed metrics to assess errors in shock wave strength and location, achieving errors of 6.4% and 1%, respectively. Assessing the generalizability of our method, we tested it on different training sample sizes and compared it against the proper orthogonal decomposition (POD)-based reduced-order model (ROM). Our results indicate that DIP-ShockNet outperforms POD-ROM by 60% in predicting the complete transonic flow field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助ZN采纳,获得10
1秒前
2秒前
2秒前
TobyGarfielD完成签到 ,获得积分10
4秒前
YifanWang应助永曼采纳,获得20
4秒前
华仔应助浅斟低唱采纳,获得10
4秒前
诗蕊完成签到 ,获得积分10
5秒前
5秒前
777发布了新的文献求助10
6秒前
流星雨发布了新的文献求助10
6秒前
默默地读文献应助高兴123采纳,获得10
7秒前
小蘑菇应助高兴123采纳,获得10
7秒前
852应助高兴123采纳,获得10
7秒前
爆米花应助高兴123采纳,获得10
7秒前
FashionBoy应助高兴123采纳,获得30
7秒前
taozi完成签到,获得积分0
7秒前
NN完成签到,获得积分10
8秒前
小乔发布了新的文献求助10
8秒前
橘子石榴完成签到,获得积分10
9秒前
栗子发布了新的文献求助10
11秒前
13秒前
hu完成签到,获得积分10
13秒前
协和_子鱼发布了新的文献求助10
18秒前
11111发布了新的文献求助30
19秒前
20秒前
宋阔发布了新的文献求助10
20秒前
20秒前
星海殇完成签到 ,获得积分0
21秒前
22秒前
鲸落完成签到 ,获得积分10
22秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
瘦瘦远山应助科研通管家采纳,获得10
24秒前
所所应助科研通管家采纳,获得10
24秒前
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
田様应助科研通管家采纳,获得10
24秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
瘦瘦远山应助科研通管家采纳,获得10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671865
求助须知:如何正确求助?哪些是违规求助? 3228411
关于积分的说明 9780495
捐赠科研通 2938947
什么是DOI,文献DOI怎么找? 1610296
邀请新用户注册赠送积分活动 760634
科研通“疑难数据库(出版商)”最低求助积分说明 736119