光致聚合物
材料科学
弹性体
光引发剂
固化(化学)
复合材料
低聚物
甲基丙烯酸酯
聚合物
粘度
紫外线固化
聚氨酯
高分子化学
聚合
单体
作者
Xianmei Huang,Shuqiang Peng,Longhui Zheng,Dongxian Zhuo,Lixin Wu,Zixiang Weng
标识
DOI:10.1002/adma.202304430
摘要
Abstract Elastomers prepared via vat photopolymerizationus ually exhibit unsatisfied mechanical properties owing to their insufficient growth of molecular weight upon UV exposure. Increasing the weight ratio of oligomer in the resin system is an effective approach to enhance the mechanical properties, yet the viscosity of the UV‐curable resin increases dramatically; this hinders its printing. In this study, a linear scan‐based vat photopolymerization (LSVP) system which can print high‐viscosity resins is implemented to 3D print the oligomer‐dominated UV‐curable resin via a dual‐curing mechanism. A polyurethane methacrylate blocking oligomer is first synthesized and then mixed with a commercialized bifunctional oligomer, photoinitiator, and primary amine as a chain extender to prepare high‐viscosity UV‐curable resin for the LSVP system. The deblocked isocyanate is further crosslinked with a chain extender via thermal treatment to construct a highly entangled polymer chain network. The optimal thermal treatment parameters are investigated, and the resilience of the 3D‐printed elastomer is evaluated through continuous tensile loading and unloading tests. Subsequently, complex structured elastomers are printed, exhibiting favorable mechanical durability without defects. The results obtained from this work will provide a reference for preparing elastomeric devices with excellent physical properties and expand the application scope of vat photopolymerization to new fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI