Multi‐scale statistical deformation based co‐registration of prostate MRI and post‐surgical whole mount histopathology

组织病理学 前列腺切除术 基本事实 人工智能 金标准(测试) 图像配准 磁共振成像 前列腺 前列腺癌 放射科 计算机科学 医学 病理 癌症 内科学 图像(数学)
作者
Lin Li,Rakesh Shiradkar,Norman L. Gottlieb,Christina Buzzy,Amogh Hiremath,Vidya Sankar Viswanathan,Gregory T. MacLennan,Danly Omil Lima,Karishma Gupta,Daniel Lee Shen,Sree Harsha Tirumani,Cristina Magi‐Galluzzi,Andrei S. Purysko,Anant Madabhushi
出处
期刊:Medical Physics [Wiley]
卷期号:51 (4): 2549-2562
标识
DOI:10.1002/mp.16753
摘要

Abstract Background Accurate delineations of regions of interest (ROIs) on multi‐parametric magnetic resonance imaging (mpMRI) are crucial for development of automated, machine learning‐based prostate cancer (PCa) detection and segmentation models. However, manual ROI delineations are labor‐intensive and susceptible to inter‐reader variability. Histopathology images from radical prostatectomy (RP) represent the “gold standard” in terms of the delineation of disease extents, for example, PCa, prostatitis, and benign prostatic hyperplasia (BPH). Co‐registering digitized histopathology images onto pre‐operative mpMRI enables automated mapping of the ground truth disease extents onto mpMRI, thus enabling the development of machine learning tools for PCa detection and risk stratification. Still, MRI‐histopathology co‐registration is challenging due to various artifacts and large deformation between in vivo MRI and ex vivo whole‐mount histopathology images (WMHs). Furthermore, the artifacts on WMHs, such as tissue loss, may introduce unrealistic deformation during co‐registration. Purpose This study presents a new registration pipeline, MSERgSDM, a multi‐scale feature‐based registration (MSERg) with a statistical deformation (SDM) constraint, which aims to improve accuracy of MRI‐histopathology co‐registration. Methods In this study, we collected 85 pairs of MRI and WMHs from 48 patients across three cohorts. Cohort 1 (D 1 ), comprised of a unique set of 3D printed mold data from six patients, facilitated the generation of ground truth deformations between ex vivo WMHs and in vivo MRI. The other two clinically acquired cohorts (D 2 and D 3 ) included 42 patients. Affine and nonrigid registrations were employed to minimize the deformation between ex vivo WMH and ex vivo T2‐weighted MRI (T2WI) in D 1 . Subsequently, ground truth deformation between in vivo T2WI and ex vivo WMH was approximated as the deformation between in vivo T2WI and ex vivo T2WI. In D 2 and D 3 , the prostate anatomical annotations, for example, tumor and urethra, were made by a pathologist and a radiologist in collaboration. These annotations included ROI boundary contours and landmark points. Before applying the registration, manual corrections were made for flipping and rotation of WMHs. MSERgSDM comprises two main components: (1) multi‐scale representation construction, and (2) SDM construction. For the SDM construction, we collected N = 200 reasonable deformation fields generated using MSERg, verified through visual inspection. Three additional methods, including intensity‐based registration, ProsRegNet, and MSERg, were also employed for comparison against MSERgSDM. Results Our results suggest that MSERgSDM performed comparably to the ground truth ( p > 0.05). Additionally, MSERgSDM (ROI Dice ratio = 0.61, landmark distance = 3.26 mm) exhibited significant improvement over MSERg (ROI Dice ratio = 0.59, landmark distance = 3.69 mm) and ProsRegNet (ROI Dice ratio = 0.56, landmark distance = 4.00 mm) in local alignment. Conclusions This study presents a novel registration method, MSERgSDM, for mapping ex vivo WMH onto in vivo prostate MRI. Our preliminary results demonstrate that MSERgSDM can serve as a valuable tool to map ground truth disease annotations from histopathology images onto MRI, thereby assisting in the development of machine learning models for PCa detection on MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
龚薇完成签到,获得积分20
4秒前
taozi完成签到,获得积分10
5秒前
星辰大海应助清新的橘子采纳,获得10
6秒前
6秒前
7秒前
CipherSage应助可耐的千柳采纳,获得10
8秒前
唠叨的善若完成签到,获得积分10
8秒前
Lucas应助WSZXQ采纳,获得10
11秒前
asdadadad发布了新的文献求助10
11秒前
麦海星发布了新的文献求助30
12秒前
taozi发布了新的文献求助10
12秒前
12秒前
snowwwwwwwwfox完成签到,获得积分10
13秒前
yinghan1212发布了新的文献求助10
14秒前
14秒前
领导范儿应助之鱼之乐采纳,获得10
14秒前
kaida发布了新的文献求助10
14秒前
冷傲山彤完成签到,获得积分10
15秒前
CodeCraft应助琉璃岁月采纳,获得10
16秒前
Kz发布了新的文献求助10
17秒前
hai完成签到,获得积分10
19秒前
文文发布了新的文献求助10
19秒前
山扶发布了新的文献求助10
20秒前
冷傲山彤发布了新的文献求助10
20秒前
jawa完成签到 ,获得积分10
23秒前
鳗鱼思天应助狐狐采纳,获得10
23秒前
小火孩完成签到 ,获得积分10
23秒前
24秒前
星辰大海应助小酥肉采纳,获得10
24秒前
烟花应助HUA采纳,获得50
26秒前
29秒前
NexusExplorer应助文文采纳,获得30
30秒前
31秒前
于水清应助Kz采纳,获得10
31秒前
BL完成签到,获得积分20
32秒前
yinghan1212完成签到,获得积分20
32秒前
呆呆完成签到,获得积分10
33秒前
琉璃岁月发布了新的文献求助10
33秒前
33秒前
高分求助中
All the Birds of the World 3000
General Equilibrium, Capital and Macroeconomics 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Synthesis of Novel Salt-Resistant and High-Temperature Hydroxyapatite Nanoparticle for Rheology, Lubricity, Surface Tension, and Filtration Property Modifications of Water-Based Drilling Mud 300
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3724009
求助须知:如何正确求助?哪些是违规求助? 3269539
关于积分的说明 9961144
捐赠科研通 2984024
什么是DOI,文献DOI怎么找? 1637171
邀请新用户注册赠送积分活动 777384
科研通“疑难数据库(出版商)”最低求助积分说明 746959