Dynamic Cascade Query Selection for Oriented Object Detection

计算机科学 级联 趋同(经济学) 对象(语法) 目标检测 选择(遗传算法) 组分(热力学) 过程(计算) 计算 先验与后验 图层(电子) 数据挖掘 最大后验估计 人工智能 计算机视觉 模式识别(心理学) 算法 数学 最大似然 哲学 化学 物理 统计 有机化学 认识论 色谱法 经济 热力学 经济增长 操作系统
作者
Qiaolin Zeng,Xiang Ran,Hao Zhu,Yanghua Gao,Xinfa Qiu,Liangfu Chen
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:3
标识
DOI:10.1109/lgrs.2023.3304023
摘要

Most of the existing object detection methods have complicated hand-designed components, such as non-maximum suppression procedures and manual resizing of anchor boxes. Based on DETR, this paper not only eliminates the need for manual component adjustment, but also solves three problems of poor remote sensing image for directional object capture, slow DETR convergence, and the same attention allocated by different layers of Decoder. First, the D-Angle module is used to align the rotating object region while accelerating the convergence using the a priori angle. Then the overall computation of the model is reduced by using Adaptive Proposal Selection(APS) in the cascade structure. Finally, the Adaptive Query Selection(AQS) module is applied so that Decoder in different layers get different attention weights to optimize the layer-by-layer fine-tuning process. In this paper, the effectiveness of the proposed method is verified using two public datasets, DOTA and HRSC2016.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶糖完成签到,获得积分10
2秒前
丘比特应助浪迹天涯采纳,获得10
3秒前
5秒前
5秒前
虚幻白玉发布了新的文献求助10
6秒前
清客完成签到 ,获得积分10
6秒前
传奇3应助阳阳采纳,获得10
6秒前
8秒前
皮皮桂发布了新的文献求助10
8秒前
Hello应助无奈傲菡采纳,获得10
8秒前
故意的傲玉应助FENGHUI采纳,获得10
9秒前
10秒前
科研通AI5应助nextconnie采纳,获得10
11秒前
James完成签到,获得积分10
11秒前
12秒前
Lucas应助sun采纳,获得10
13秒前
KristenStewart完成签到,获得积分10
15秒前
过时的热狗完成签到,获得积分10
15秒前
点点完成签到,获得积分10
15秒前
Zxc发布了新的文献求助10
16秒前
涨芝士完成签到 ,获得积分10
17秒前
18秒前
无名欧文关注了科研通微信公众号
18秒前
科研123完成签到,获得积分10
20秒前
crescent完成签到 ,获得积分10
22秒前
无奈傲菡发布了新的文献求助10
22秒前
烟花应助123号采纳,获得10
25秒前
超帅的遥完成签到,获得积分10
25秒前
Zxc完成签到,获得积分10
26秒前
lbt完成签到 ,获得积分10
27秒前
yao完成签到 ,获得积分10
28秒前
28秒前
30秒前
31秒前
31秒前
doudou完成签到 ,获得积分10
31秒前
BCS完成签到,获得积分10
31秒前
领导范儿应助KYN采纳,获得10
31秒前
32秒前
独特的莫言完成签到,获得积分10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849