Multi and hyperspectral image unmixing with spatial coherence by extended blind end-member and abundance extraction

高光谱成像 粒度 坐标下降 计算机科学 算法 丰度(生态学) 连贯性(哲学赌博策略) 趋同(经济学) 盲信号分离 噪音(视频) 模式识别(心理学) 人工智能 数学优化 数学 图像(数学) 统计 生态学 计算机网络 频道(广播) 经济 生物 经济增长 操作系统
作者
Inés A. Cruz‐Guerrero,Aldo R. Mejía‐Rodríguez,Samuel Ortega,Himar Fabelo,Gustavo M. Callicó,Javier A. Jo,Daniel U. Campos‐Delgado
出处
期刊:Journal of The Franklin Institute-engineering and Applied Mathematics [Elsevier]
卷期号:360 (15): 11165-11196 被引量:1
标识
DOI:10.1016/j.jfranklin.2023.08.027
摘要

Blind linear unmixing (BLU) methods decompose multi and hyperspectral datasets into end-members and abundance maps with an unsupervised perspective. However, due to measurement noise and model uncertainty, the estimated abundance maps could exhibit granularity, which causes a loss of detail that could be crucial in certain applications. To address this problem, in this paper, we present a BLU proposal that considers spatial coherence (SC) in the abundance estimates. The proposed BLU formulation is based on the extended blind end-member and abundance extraction (EBEAE) methodology, and is denoted as EBEAE-SC. In this proposed method, the energy functional of EBEAE-SC includes new variables, which are denoted as internal abundances, to induce SC in the BLU approach. The new formulation of the optimization problem is solved by a coordinate descent algorithm, constrained quadratic optimization, and the split Bregman formulation. We present a comprehensive validation process that considers synthetic and experimental datasets at different noise types and levels, and a comparison with five state-of-the-art BLU methods. In our results, EBEAE-SC can significantly decrease the granularity in the estimated abundances, without losing detail of the structures present in the multi and hyperspectral images. In addition, the resulting complexity of EBEAE-SC is analyzed and compared it to the original formulation of EBEAE, and also the numerical convergence of the resulting iterative process is evaluated. Hence, by our analysis, EBEAE-SC allows blind estimates of end-members and abundances in the studied datasets of diverse applications, producing linearly independent and non-negative end-members, as well as non-negative abundances, with lower estimation errors and computational times compared to five methodologies in the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
毛豆应助冷傲的道罡采纳,获得10
1秒前
1秒前
2秒前
ahua15s发布了新的文献求助10
2秒前
2秒前
孙璧宬发布了新的文献求助10
4秒前
yyw完成签到,获得积分20
5秒前
汉堡包应助zzy采纳,获得30
5秒前
孜然西瓜完成签到,获得积分10
5秒前
abab小王完成签到,获得积分10
5秒前
SciGPT应助zanilia采纳,获得10
6秒前
6秒前
611完成签到,获得积分10
6秒前
lalala应助Fengliguantou采纳,获得10
7秒前
bai完成签到,获得积分10
7秒前
神说应助大袁采纳,获得10
8秒前
子非鱼完成签到 ,获得积分10
9秒前
10秒前
Orange应助清水采纳,获得10
10秒前
田様应助彭佳丽采纳,获得10
10秒前
10秒前
爆米花应助老板多加香菜采纳,获得10
11秒前
11秒前
孙璧宬完成签到,获得积分10
11秒前
11秒前
12秒前
良辰应助YYT采纳,获得10
12秒前
烟雨完成签到,获得积分10
14秒前
14秒前
废柴发布了新的文献求助10
15秒前
15秒前
YH完成签到,获得积分10
15秒前
semigreen发布了新的文献求助10
15秒前
16秒前
快乐毕业发布了新的文献求助10
16秒前
611发布了新的文献求助10
17秒前
yar应助chenxin7271采纳,获得10
18秒前
isabelwy完成签到,获得积分0
19秒前
羡三岁完成签到,获得积分10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309200
求助须知:如何正确求助?哪些是违规求助? 2942533
关于积分的说明 8509490
捐赠科研通 2617712
什么是DOI,文献DOI怎么找? 1430268
科研通“疑难数据库(出版商)”最低求助积分说明 664108
邀请新用户注册赠送积分活动 649272