Multi and hyperspectral image unmixing with spatial coherence by extended blind end-member and abundance extraction

高光谱成像 粒度 坐标下降 计算机科学 算法 丰度(生态学) 连贯性(哲学赌博策略) 趋同(经济学) 盲信号分离 噪音(视频) 模式识别(心理学) 人工智能 数学优化 数学 图像(数学) 统计 生态学 计算机网络 频道(广播) 经济 生物 经济增长 操作系统
作者
Inés A. Cruz‐Guerrero,Aldo R. Mejía‐Rodríguez,Samuel Ortega,Himar Fabelo,Gustavo M. Callicó,Javier A. Jo,Daniel U. Campos‐Delgado
出处
期刊:Journal of The Franklin Institute-engineering and Applied Mathematics [Elsevier]
卷期号:360 (15): 11165-11196 被引量:1
标识
DOI:10.1016/j.jfranklin.2023.08.027
摘要

Blind linear unmixing (BLU) methods decompose multi and hyperspectral datasets into end-members and abundance maps with an unsupervised perspective. However, due to measurement noise and model uncertainty, the estimated abundance maps could exhibit granularity, which causes a loss of detail that could be crucial in certain applications. To address this problem, in this paper, we present a BLU proposal that considers spatial coherence (SC) in the abundance estimates. The proposed BLU formulation is based on the extended blind end-member and abundance extraction (EBEAE) methodology, and is denoted as EBEAE-SC. In this proposed method, the energy functional of EBEAE-SC includes new variables, which are denoted as internal abundances, to induce SC in the BLU approach. The new formulation of the optimization problem is solved by a coordinate descent algorithm, constrained quadratic optimization, and the split Bregman formulation. We present a comprehensive validation process that considers synthetic and experimental datasets at different noise types and levels, and a comparison with five state-of-the-art BLU methods. In our results, EBEAE-SC can significantly decrease the granularity in the estimated abundances, without losing detail of the structures present in the multi and hyperspectral images. In addition, the resulting complexity of EBEAE-SC is analyzed and compared it to the original formulation of EBEAE, and also the numerical convergence of the resulting iterative process is evaluated. Hence, by our analysis, EBEAE-SC allows blind estimates of end-members and abundances in the studied datasets of diverse applications, producing linearly independent and non-negative end-members, as well as non-negative abundances, with lower estimation errors and computational times compared to five methodologies in the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柒毛完成签到 ,获得积分10
1秒前
搜集达人应助tatata采纳,获得20
1秒前
英俊的铭应助诚c采纳,获得10
1秒前
兔子完成签到 ,获得积分10
1秒前
1秒前
苹果巧蕊完成签到 ,获得积分10
1秒前
脑洞疼应助SDS采纳,获得10
1秒前
JamesPei应助Guo采纳,获得20
2秒前
马保国123完成签到,获得积分10
2秒前
2秒前
2秒前
迷你的冰巧完成签到,获得积分10
2秒前
万能图书馆应助学术蝗虫采纳,获得10
3秒前
慕青应助aurora采纳,获得30
3秒前
Jasper应助满意的盼夏采纳,获得10
3秒前
yitang完成签到,获得积分10
5秒前
www完成签到,获得积分10
5秒前
zhenzhen发布了新的文献求助10
5秒前
飞羽发布了新的文献求助10
5秒前
江沅完成签到 ,获得积分10
5秒前
6秒前
6秒前
Sean完成签到,获得积分10
6秒前
兜兜完成签到 ,获得积分10
6秒前
羊羊羊发布了新的文献求助10
7秒前
Rui完成签到,获得积分10
7秒前
bigger.b完成签到,获得积分10
7秒前
Nerissa完成签到,获得积分10
7秒前
Dr.Tang发布了新的文献求助10
7秒前
7秒前
田様应助笑点低蜜蜂采纳,获得10
7秒前
英俊的铭应助么系么系采纳,获得10
8秒前
ding应助寒冷的奇异果采纳,获得10
8秒前
lx发布了新的文献求助10
9秒前
舒适念真发布了新的文献求助10
9秒前
沉默哈密瓜完成签到 ,获得积分10
10秒前
身处人海完成签到,获得积分10
10秒前
Singularity应助暴躁的安柏采纳,获得10
10秒前
Singularity应助暴躁的安柏采纳,获得10
10秒前
大模型应助皓月千里采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678