亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi and hyperspectral image unmixing with spatial coherence by extended blind end-member and abundance extraction

高光谱成像 粒度 坐标下降 计算机科学 算法 丰度(生态学) 连贯性(哲学赌博策略) 趋同(经济学) 盲信号分离 噪音(视频) 模式识别(心理学) 人工智能 数学优化 数学 图像(数学) 统计 生态学 频道(广播) 操作系统 生物 经济 经济增长 计算机网络
作者
Inés A. Cruz‐Guerrero,Aldo R. Mejía‐Rodríguez,Samuel Ortega,Himar Fabelo,Gustavo M. Callicó,Javier A. Jo,Daniel U. Campos‐Delgado
出处
期刊:Journal of The Franklin Institute-engineering and Applied Mathematics [Elsevier]
卷期号:360 (15): 11165-11196 被引量:1
标识
DOI:10.1016/j.jfranklin.2023.08.027
摘要

Blind linear unmixing (BLU) methods decompose multi and hyperspectral datasets into end-members and abundance maps with an unsupervised perspective. However, due to measurement noise and model uncertainty, the estimated abundance maps could exhibit granularity, which causes a loss of detail that could be crucial in certain applications. To address this problem, in this paper, we present a BLU proposal that considers spatial coherence (SC) in the abundance estimates. The proposed BLU formulation is based on the extended blind end-member and abundance extraction (EBEAE) methodology, and is denoted as EBEAE-SC. In this proposed method, the energy functional of EBEAE-SC includes new variables, which are denoted as internal abundances, to induce SC in the BLU approach. The new formulation of the optimization problem is solved by a coordinate descent algorithm, constrained quadratic optimization, and the split Bregman formulation. We present a comprehensive validation process that considers synthetic and experimental datasets at different noise types and levels, and a comparison with five state-of-the-art BLU methods. In our results, EBEAE-SC can significantly decrease the granularity in the estimated abundances, without losing detail of the structures present in the multi and hyperspectral images. In addition, the resulting complexity of EBEAE-SC is analyzed and compared it to the original formulation of EBEAE, and also the numerical convergence of the resulting iterative process is evaluated. Hence, by our analysis, EBEAE-SC allows blind estimates of end-members and abundances in the studied datasets of diverse applications, producing linearly independent and non-negative end-members, as well as non-negative abundances, with lower estimation errors and computational times compared to five methodologies in the state-of-the-art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
null完成签到,获得积分0
8秒前
走啊走应助科研通管家采纳,获得10
20秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
闪闪的YOSH完成签到,获得积分10
34秒前
2分钟前
pups发布了新的文献求助20
2分钟前
英俊的铭应助pups采纳,获得30
2分钟前
乐乐应助科研通管家采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
森林发布了新的文献求助10
3分钟前
zhangxiaoqing发布了新的文献求助10
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
知性的剑身完成签到,获得积分10
4分钟前
DocChen发布了新的文献求助10
5分钟前
xiaoqingnian完成签到,获得积分10
5分钟前
小粒橙完成签到 ,获得积分10
5分钟前
猫抓板完成签到,获得积分10
5分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
7分钟前
万能图书馆应助猫抓板采纳,获得10
7分钟前
8分钟前
猫抓板发布了新的文献求助10
8分钟前
路人应助Magali采纳,获得200
8分钟前
小蘑菇应助猫抓板采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
大园完成签到 ,获得积分10
8分钟前
8分钟前
领导范儿应助Magali采纳,获得150
8分钟前
猫抓板发布了新的文献求助10
8分钟前
昭昭完成签到,获得积分10
8分钟前
8分钟前
Magali发布了新的文献求助150
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671257
求助须知:如何正确求助?哪些是违规求助? 4912973
关于积分的说明 15134310
捐赠科研通 4830056
什么是DOI,文献DOI怎么找? 2586666
邀请新用户注册赠送积分活动 1540282
关于科研通互助平台的介绍 1498486