Multi and hyperspectral image unmixing with spatial coherence by extended blind end-member and abundance extraction

高光谱成像 粒度 坐标下降 计算机科学 算法 丰度(生态学) 连贯性(哲学赌博策略) 趋同(经济学) 盲信号分离 噪音(视频) 模式识别(心理学) 人工智能 数学优化 数学 图像(数学) 统计 生态学 计算机网络 频道(广播) 经济 生物 经济增长 操作系统
作者
Inés A. Cruz‐Guerrero,Aldo R. Mejía‐Rodríguez,Samuel Ortega,Himar Fabelo,Gustavo M. Callicó,Javier A. Jo,Daniel U. Campos‐Delgado
出处
期刊:Journal of The Franklin Institute-engineering and Applied Mathematics [Elsevier BV]
卷期号:360 (15): 11165-11196 被引量:1
标识
DOI:10.1016/j.jfranklin.2023.08.027
摘要

Blind linear unmixing (BLU) methods decompose multi and hyperspectral datasets into end-members and abundance maps with an unsupervised perspective. However, due to measurement noise and model uncertainty, the estimated abundance maps could exhibit granularity, which causes a loss of detail that could be crucial in certain applications. To address this problem, in this paper, we present a BLU proposal that considers spatial coherence (SC) in the abundance estimates. The proposed BLU formulation is based on the extended blind end-member and abundance extraction (EBEAE) methodology, and is denoted as EBEAE-SC. In this proposed method, the energy functional of EBEAE-SC includes new variables, which are denoted as internal abundances, to induce SC in the BLU approach. The new formulation of the optimization problem is solved by a coordinate descent algorithm, constrained quadratic optimization, and the split Bregman formulation. We present a comprehensive validation process that considers synthetic and experimental datasets at different noise types and levels, and a comparison with five state-of-the-art BLU methods. In our results, EBEAE-SC can significantly decrease the granularity in the estimated abundances, without losing detail of the structures present in the multi and hyperspectral images. In addition, the resulting complexity of EBEAE-SC is analyzed and compared it to the original formulation of EBEAE, and also the numerical convergence of the resulting iterative process is evaluated. Hence, by our analysis, EBEAE-SC allows blind estimates of end-members and abundances in the studied datasets of diverse applications, producing linearly independent and non-negative end-members, as well as non-negative abundances, with lower estimation errors and computational times compared to five methodologies in the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助MMM采纳,获得10
刚刚
Youzi完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
虚拟的柠檬完成签到,获得积分10
4秒前
英俊的铭应助jiangmax采纳,获得10
5秒前
好天气发布了新的文献求助10
5秒前
Fly完成签到,获得积分10
6秒前
Owen应助霸气冰露采纳,获得10
7秒前
8秒前
细腻鸭子完成签到,获得积分10
8秒前
情怀应助立青采纳,获得30
9秒前
领导范儿应助生动宛筠采纳,获得10
10秒前
Owen应助20采纳,获得10
12秒前
唯梦完成签到 ,获得积分10
12秒前
13秒前
科研通AI6应助幽默天真采纳,获得10
13秒前
13秒前
闻风听雨完成签到,获得积分10
13秒前
所所应助wc采纳,获得10
14秒前
田様应助恩恩吴采纳,获得10
15秒前
调皮的巧凡完成签到,获得积分10
16秒前
17秒前
英姑应助萝卜采纳,获得10
18秒前
18秒前
18秒前
bkagyin应助MMM采纳,获得10
19秒前
晓豪发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
20秒前
20秒前
小语丝发布了新的文献求助10
21秒前
细腻的枫叶完成签到 ,获得积分10
22秒前
jiangmax发布了新的文献求助10
22秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
努力毕业ing完成签到,获得积分10
23秒前
LLLi完成签到,获得积分20
25秒前
暴躁的黎云完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911831
求助须知:如何正确求助?哪些是违规求助? 4187185
关于积分的说明 13003332
捐赠科研通 3955152
什么是DOI,文献DOI怎么找? 2168569
邀请新用户注册赠送积分活动 1187064
关于科研通互助平台的介绍 1094301