亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-based prediction of 30-day major adverse cardiac and cerebrovascular events in non-cardiac surgery patients

医学 决策树 围手术期 心脏外科 逻辑回归 急诊医学 病历 重症监护医学 机器学习 梯度升压 回顾性队列研究 观察研究 随机森林 人工智能 外科 内科学 计算机科学
作者
Ju-Seung Kwun,H Ahn,Jung Wook Suh,S Y Yoo
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:44 (Supplement_2)
标识
DOI:10.1093/eurheartj/ehad655.2433
摘要

Abstract Background The number of non-cardiac surgeries performed worldwide has been steadily increasing, presenting a challenge for clinicians to accurately identify patients at high risk of complications and to allocate the appropriate level of perioperative care. Accurate prediction of postoperative mortality is crucial not only for successful patient care, but also for information-based shared decision-making with patients and efficient allocation of medical resources. Purpose In this study, we aimed to develop a novel predictive model using machine learning methods applied to electronic health record data. Our objective is to identify the risk factors most likely to lead to 30-day major adverse cardiac and cerebrovascular events after non-cardiac surgery Methods We conducted a retrospective analysis of data from a single tertiary care institution that included patients aged 65 years or over who underwent non-cardiac surgery from May 2003 and December 2020. The Observational Medical Outcomes Partnership (OMOP) common data model (CDM) data was used to build predictive models, which allowed for the utilization of demographic data, as well as preoperative characteristics such as diagnosis, lab results, vital signs, medications, and information on operations and procedures from the electronic health records (EHRs) in a standardized way. We employed machine learning models, which were developed and validated using the OHDSI Patient-Level-Prediction framework. Results We included a total of 47,915 patients to train (75%) and test (25%) our predictive models. To compare prediction performances, we applied gradient boosting machine (GBM), logistic regression (LR), random forest (RF), AdaBoost (AB), and decision tree (DT). Our results for a test data (Fig 1.) showed that the GBM model had the best performance in terms of the area under the receiver operating characteristic curve (AUROC) (0.903) and the area under the precision-recall curve (AUPRC) (0.395). Conclusions Our study demonstrates that applying machine learning algorithms to electronic health record data can effectively identify patients at high risk of major adverse cardiac and cerebrovascular events following non-cardiac surgery. This algorithm has the potential to support clinicians in effectively identifying patients at high risk and provide appropriate perioperative care. Further work is needed to validate and refine the proposed model to ensure its external validity and broader applicability in clinical practice.We plan to validate the proposed model externally by testing it on a cohort of approximately 280,000 patients from other tertiary care institution, and present the results at the 2023 ESC Congress.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
44秒前
1分钟前
Rewi_Zhang完成签到,获得积分10
1分钟前
1分钟前
失眠的霸发布了新的文献求助10
1分钟前
VDC发布了新的文献求助30
1分钟前
加菲丰丰完成签到,获得积分0
2分钟前
海森堡完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
2分钟前
TT0622发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
医学僧发布了新的文献求助10
4分钟前
4分钟前
万能图书馆应助丰富曼青采纳,获得10
4分钟前
4分钟前
丰富曼青发布了新的文献求助10
4分钟前
Orange应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
田様应助yueyangyin采纳,获得10
5分钟前
5分钟前
lanxinge完成签到 ,获得积分10
5分钟前
医学僧完成签到,获得积分10
5分钟前
5分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
6分钟前
英喆完成签到 ,获得积分10
6分钟前
杨枝甘露完成签到,获得积分20
7分钟前
CodeCraft应助Yesaniar采纳,获得10
7分钟前
7分钟前
7分钟前
矢思然完成签到,获得积分10
7分钟前
Yesaniar发布了新的文献求助10
7分钟前
虚心橘子完成签到,获得积分10
7分钟前
CodeCraft应助科研通管家采纳,获得10
8分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516380
求助须知:如何正确求助?哪些是违规求助? 3098637
关于积分的说明 9240207
捐赠科研通 2793747
什么是DOI,文献DOI怎么找? 1533239
邀请新用户注册赠送积分活动 712622
科研通“疑难数据库(出版商)”最低求助积分说明 707387