NIMG-46. MULTI-PARAMETRIC MRI RADIOMIC ANALYSIS USING DEEP LEARNING PREDICTS PERITUMORAL GLIOBLASTOMA INFILTRATION AND SUBSEQUENT RECURRENCE

医学 渗透(HVAC) 流体衰减反转恢复 胶质母细胞瘤 磁共振成像 放射科 无线电技术 接收机工作特性 队列 分级(工程) 核医学 内科学 物理 土木工程 癌症研究 工程类 热力学
作者
Sunwoo Kwak,Hamed Akbari,José García,Suyash Mohan,Christos Davatzikos
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:25 (Supplement_5): v196-v196
标识
DOI:10.1093/neuonc/noad179.0742
摘要

Abstract PURPOSE Glioblastoma (GBM) is the most aggressive and infiltrative brain tumor with a very poor prognosis which hasn’t significantly improved in over 20 years. The almost 100% recurrence rate is due to cancer infiltration beyond the tumor margins currently being targeted by standard of care. Prior studies used traditional supervised machine learning have shown great promise in predicting tumor infiltration beyond these margins. We hypothesize that deep learning methods can further improve such predictive maps and guide intensive, yet targeted and personalized therapies. METHODS MRIs from a cohort of 109 de novo GBM patients were collected from Hospital of the University of Pennsylvania. All the patients incorporated in this study had pre-operative multi-parametric MRI scans including T1, T1Gd, T2, T2-FLAIR, ADC, and underwent surgical resection followed by standard chemoradiation therapy and had pathologically confirmed recurrence. A novel, automated deep learning method, informed by results of prior studies using support vector machines, was constructed to train a patch-based ensemble CNN to identify regions of peri-tumoral cancer infiltration. Leave-one-out was used to evaluate the predictive value of this method, against pathology-proven subsequent recurrence. RESULTS Probability maps, representing the likelihood of tumor infiltration and eventual recurrence, were binarized using threshold of 50% cutoff, compared with actual recurrence on post-recurrence MRI scans. The average cross-validated accuracy was 92%, specificity was 93%, patient-based sensitivity was 78%, and odds-ratio among all patients was 12.95 (Estimated “hot spots” were 12.95 times more likely to present recurrence in the future). CONCLUSIONS This study demonstrates that Multi-parametric MRI pattern analysis using CNN based network can successfully predict tumor infiltration in peritumoral region for Glioblastoma patients. These suggest that new intensive, yet precisely targeted treatments can be developed, guided by AI-driven predictive maps of infiltration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
An完成签到,获得积分10
刚刚
max发布了新的文献求助10
2秒前
布不高发布了新的文献求助10
4秒前
4秒前
天天快乐应助Li采纳,获得10
5秒前
ooo娜发布了新的文献求助10
5秒前
6秒前
打打应助hyfwkd采纳,获得10
6秒前
细腻的雅山完成签到 ,获得积分10
7秒前
xigua发布了新的文献求助10
8秒前
橙熟完成签到,获得积分10
10秒前
10秒前
小二郎应助mn采纳,获得10
10秒前
摆烂的实验室打工人完成签到,获得积分10
11秒前
noss发布了新的文献求助10
11秒前
七叶树完成签到,获得积分10
11秒前
YH发布了新的文献求助10
12秒前
12秒前
12秒前
彭于晏应助十点睡六点起采纳,获得10
13秒前
13秒前
领导范儿应助方法采纳,获得30
14秒前
15秒前
布不高完成签到,获得积分10
16秒前
sheldon发布了新的文献求助10
16秒前
Li发布了新的文献求助10
17秒前
18秒前
19秒前
zddhhh发布了新的文献求助10
20秒前
小二郎应助BakedMax采纳,获得10
20秒前
方法完成签到,获得积分10
21秒前
jrzsy完成签到,获得积分10
21秒前
21秒前
AIMS完成签到,获得积分10
21秒前
pan发布了新的文献求助10
25秒前
mao完成签到,获得积分10
26秒前
liu完成签到,获得积分10
30秒前
李爱国应助微弱de胖头采纳,获得10
30秒前
天天快乐应助Asher采纳,获得10
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135622
捐赠科研通 3239835
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150