NIMG-46. MULTI-PARAMETRIC MRI RADIOMIC ANALYSIS USING DEEP LEARNING PREDICTS PERITUMORAL GLIOBLASTOMA INFILTRATION AND SUBSEQUENT RECURRENCE

医学 渗透(HVAC) 流体衰减反转恢复 胶质母细胞瘤 磁共振成像 放射科 无线电技术 接收机工作特性 队列 分级(工程) 核医学 内科学 物理 工程类 热力学 土木工程 癌症研究
作者
Sunwoo Kwak,Hamed Akbari,José García,Suyash Mohan,Christos Davatzikos
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:25 (Supplement_5): v196-v196
标识
DOI:10.1093/neuonc/noad179.0742
摘要

Abstract PURPOSE Glioblastoma (GBM) is the most aggressive and infiltrative brain tumor with a very poor prognosis which hasn’t significantly improved in over 20 years. The almost 100% recurrence rate is due to cancer infiltration beyond the tumor margins currently being targeted by standard of care. Prior studies used traditional supervised machine learning have shown great promise in predicting tumor infiltration beyond these margins. We hypothesize that deep learning methods can further improve such predictive maps and guide intensive, yet targeted and personalized therapies. METHODS MRIs from a cohort of 109 de novo GBM patients were collected from Hospital of the University of Pennsylvania. All the patients incorporated in this study had pre-operative multi-parametric MRI scans including T1, T1Gd, T2, T2-FLAIR, ADC, and underwent surgical resection followed by standard chemoradiation therapy and had pathologically confirmed recurrence. A novel, automated deep learning method, informed by results of prior studies using support vector machines, was constructed to train a patch-based ensemble CNN to identify regions of peri-tumoral cancer infiltration. Leave-one-out was used to evaluate the predictive value of this method, against pathology-proven subsequent recurrence. RESULTS Probability maps, representing the likelihood of tumor infiltration and eventual recurrence, were binarized using threshold of 50% cutoff, compared with actual recurrence on post-recurrence MRI scans. The average cross-validated accuracy was 92%, specificity was 93%, patient-based sensitivity was 78%, and odds-ratio among all patients was 12.95 (Estimated “hot spots” were 12.95 times more likely to present recurrence in the future). CONCLUSIONS This study demonstrates that Multi-parametric MRI pattern analysis using CNN based network can successfully predict tumor infiltration in peritumoral region for Glioblastoma patients. These suggest that new intensive, yet precisely targeted treatments can be developed, guided by AI-driven predictive maps of infiltration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨也箫潇完成签到,获得积分10
刚刚
LQQ完成签到 ,获得积分10
刚刚
1秒前
ding应助碧蓝板栗采纳,获得20
1秒前
1秒前
3秒前
Re关注了科研通微信公众号
3秒前
3秒前
万能图书馆应助doll0117采纳,获得10
3秒前
啊杨丶发布了新的文献求助10
4秒前
药勺儿发布了新的文献求助10
4秒前
5秒前
麦益颖完成签到,获得积分10
6秒前
油2发布了新的文献求助10
6秒前
OHHO完成签到,获得积分10
6秒前
6秒前
飞龙在天发布了新的文献求助10
7秒前
8秒前
资紫丝发布了新的文献求助10
9秒前
CodeCraft应助LC采纳,获得10
9秒前
我是老大应助云上的猫采纳,获得10
11秒前
霜打了的葡萄完成签到,获得积分10
12秒前
啊杨丶完成签到,获得积分20
12秒前
样样子完成签到,获得积分10
12秒前
充电宝应助飞龙在天采纳,获得10
13秒前
Charles完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
疾风骤雨发布了新的文献求助10
15秒前
筱晓完成签到,获得积分10
15秒前
16秒前
眯眯眼的篮球完成签到 ,获得积分10
16秒前
feeuoo发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
筱晓发布了新的文献求助10
18秒前
小太阳完成签到,获得积分10
19秒前
20秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330040
求助须知:如何正确求助?哪些是违规求助? 2959654
关于积分的说明 8596227
捐赠科研通 2638022
什么是DOI,文献DOI怎么找? 1444115
科研通“疑难数据库(出版商)”最低求助积分说明 668935
邀请新用户注册赠送积分活动 656517