An unsupervised transfer learning approach for rolling bearing fault diagnosis based on dual pseudo-label screening

人工智能 计算机科学 断层(地质) 学习迁移 机器学习 熵(时间箭头) 理论(学习稳定性) 模式识别(心理学) 数据挖掘 量子力学 物理 地质学 地震学
作者
Chunran Huo,Weiyang Xu,Quan Jiang,Yehu Shen,Qixin Zhu,Qingkui Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:1
标识
DOI:10.1177/14759217231206579
摘要

Deep transfer learning is an effective method for unsupervised fault diagnosis of rolling bearings. In some works, the pseudo-label of target domain prediction is used to improve the ability of target domain prediction in transfer learning. However, its validity depends on the quality of pseudo-label generated by the network itself, which is easy to cause the misclassification of the samples. Aiming to this, a dual sample screening (DSS) method based on the information of predicted label changes is proposed in the article, and it is applied to the fault diagnosis of rolling bearings with variable working conditions. DSS combines pre-screening and real-time screening and uses the continuous output of prediction label change information in the training process to improve the network training. It owes to eliminating part of the target domain samples with prediction errors in the stage of network training with pseudo-label. The proposed method improves the stability of the pseudo-label involved in the training and alleviates the negative effects caused by the pseudo-label. The experimental results on Paderborn University dataset show that, compare with the deep transfer learning fault diagnosis method based on pseudo-label cross-entropy, the average diagnostic accuracy of the six transfer tasks using DSS is increased by 5.97%, which effectively improves the fault diagnosis accuracy of rolling bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
adsifhaidugw完成签到,获得积分10
2秒前
无畏完成签到 ,获得积分10
2秒前
2秒前
2秒前
尘南浔发布了新的文献求助10
2秒前
gwh68964402gwh完成签到,获得积分10
3秒前
ljkshr应助笑点低黄豆采纳,获得10
3秒前
三番心乙应助笑点低黄豆采纳,获得10
3秒前
香蕉觅云应助开朗世立采纳,获得10
3秒前
yii完成签到,获得积分10
4秒前
善学以致用应助怡然云朵采纳,获得10
5秒前
poly发布了新的文献求助10
5秒前
俊逸的香萱完成签到,获得积分10
6秒前
咕嘟发布了新的文献求助10
6秒前
emp完成签到,获得积分10
8秒前
8秒前
捣蛋完成签到,获得积分10
9秒前
科研通AI5应助舟遥遥采纳,获得10
9秒前
甜的桃子发布了新的文献求助10
10秒前
细心盼晴完成签到,获得积分10
10秒前
10秒前
哌替啶完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
kkkkk发布了新的文献求助10
11秒前
和谐谷蕊完成签到,获得积分10
12秒前
12秒前
爆米花应助CoderHao采纳,获得10
13秒前
摇落月完成签到,获得积分10
14秒前
14秒前
14秒前
poly完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
大模型应助JKL采纳,获得10
15秒前
完美世界应助TORCH采纳,获得30
15秒前
光亮的翼完成签到 ,获得积分10
16秒前
16秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3704026
求助须知:如何正确求助?哪些是违规求助? 3253627
关于积分的说明 9884836
捐赠科研通 2965504
什么是DOI,文献DOI怎么找? 1626382
邀请新用户注册赠送积分活动 770700
科研通“疑难数据库(出版商)”最低求助积分说明 743028