Facile dehydrogenation of MgH2 enabled by γ-graphyne based single-atom catalyst

脱氢 氢气储存 密度泛函理论 催化作用 石墨 石墨烯 从头算 化学 材料科学 化学物理 Atom(片上系统) 计算化学 纳米技术 有机化学 嵌入式系统 计算机科学
作者
Shuai Dong,Huan Liu,Xinyuan Liu,Chaoqun Li,Zhengyang Gao,Bogu Liu,Weijie Yang,Ying Wu
出处
期刊:Journal of energy storage [Elsevier]
卷期号:74: 109484-109484 被引量:5
标识
DOI:10.1016/j.est.2023.109484
摘要

Solid-state hydrogen storage is a promising roadmap for the safe and efficient utilization of hydrogen energy due to its moderate operating environment and high hydrogen storage density. However, as a representative solid-state hydrogen storage material, magnesium hydride (MgH2) is significantly limited in the commercial application due to its sluggish kinetics in the dehydrogenation process. Single-atom catalysts are a promising solution to this dilemma. However, the promising graphene-based single-atom catalysts are not yet sufficient to meet the dehydrogenation needs in engineering. To further address this dilemma, we designed a novel γ-graphyne based single-atom catalysts including eight 3d transition metals for promoting the dehydrogenation process of MgH2. Through using spin-polarized density functional theory calculations, we found that the energy barrier for MgH2 dehydrogenation has been significantly reduced even to 0.70 eV, which is far lower than the current graphene-based single-atom catalyst. In detail, the migration trajectory of hydrogen atom in the dehydrogenation process has been observed and confirmed using the ab initio molecular dynamics simulations. To investigate the intrinsic origin for its high catalytic activity of single-atom catalyst, we analyze the HMg bond activation mechanism through the electron localization function, charge density difference and crystal orbital Hamiltonian population. Finally, we found the relationship between energy barrier with electronic structure of single-atom catalyst, such as electrostatic potential and system electronegativity. This work can not only provide new ideas for the optimize of dehydrogenation catalyst, but also lay a theoretical foundation for the design of novel energy storage material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TOP完成签到 ,获得积分10
1秒前
Yan完成签到,获得积分10
1秒前
干大事的小喽啰完成签到,获得积分10
2秒前
281911480完成签到,获得积分10
3秒前
3秒前
4秒前
彦祖完成签到,获得积分10
4秒前
莫羽倾尘完成签到,获得积分10
4秒前
炙热的宛完成签到,获得积分10
4秒前
SYSUer完成签到,获得积分10
4秒前
皮皮蛙完成签到,获得积分10
4秒前
早起完成签到,获得积分10
5秒前
小灰灰完成签到 ,获得积分10
5秒前
终归完成签到 ,获得积分10
5秒前
年少轻狂最情深完成签到,获得积分10
5秒前
小白菜发布了新的文献求助10
5秒前
buerjia完成签到,获得积分10
5秒前
无花果应助June采纳,获得50
6秒前
需要论文应助Mollyxueyue采纳,获得10
6秒前
刚果王子完成签到,获得积分10
6秒前
淡定的幻枫完成签到 ,获得积分10
7秒前
林黛玉倒拔垂杨柳完成签到 ,获得积分10
7秒前
8秒前
ZCLIN完成签到,获得积分20
8秒前
cheng发布了新的文献求助10
8秒前
尹山蝶完成签到,获得积分10
8秒前
去码头整点薯条完成签到 ,获得积分10
8秒前
彦祖发布了新的文献求助10
9秒前
领导范儿应助xiaolongxia采纳,获得10
9秒前
9秒前
9秒前
10秒前
dou完成签到,获得积分10
10秒前
10秒前
从容映易完成签到,获得积分10
10秒前
权志龙完成签到,获得积分10
10秒前
李劲亭完成签到,获得积分10
10秒前
虚妄完成签到,获得积分10
11秒前
心斋完成签到,获得积分10
11秒前
西西完成签到,获得积分10
12秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5387547
求助须知:如何正确求助?哪些是违规求助? 4509573
关于积分的说明 14031802
捐赠科研通 4420371
什么是DOI,文献DOI怎么找? 2428201
邀请新用户注册赠送积分活动 1420797
关于科研通互助平台的介绍 1400002