Facile dehydrogenation of MgH2 enabled by γ-graphyne based single-atom catalyst

脱氢 氢气储存 密度泛函理论 催化作用 石墨 石墨烯 从头算 化学 材料科学 化学物理 Atom(片上系统) 计算化学 纳米技术 有机化学 嵌入式系统 计算机科学
作者
Shuai Dong,Huan Liu,Xinyuan Liu,Chaoqun Li,Zhengyang Gao,Bogu Liu,Weijie Yang,Ying Wu
出处
期刊:Journal of energy storage [Elsevier]
卷期号:74: 109484-109484 被引量:5
标识
DOI:10.1016/j.est.2023.109484
摘要

Solid-state hydrogen storage is a promising roadmap for the safe and efficient utilization of hydrogen energy due to its moderate operating environment and high hydrogen storage density. However, as a representative solid-state hydrogen storage material, magnesium hydride (MgH2) is significantly limited in the commercial application due to its sluggish kinetics in the dehydrogenation process. Single-atom catalysts are a promising solution to this dilemma. However, the promising graphene-based single-atom catalysts are not yet sufficient to meet the dehydrogenation needs in engineering. To further address this dilemma, we designed a novel γ-graphyne based single-atom catalysts including eight 3d transition metals for promoting the dehydrogenation process of MgH2. Through using spin-polarized density functional theory calculations, we found that the energy barrier for MgH2 dehydrogenation has been significantly reduced even to 0.70 eV, which is far lower than the current graphene-based single-atom catalyst. In detail, the migration trajectory of hydrogen atom in the dehydrogenation process has been observed and confirmed using the ab initio molecular dynamics simulations. To investigate the intrinsic origin for its high catalytic activity of single-atom catalyst, we analyze the HMg bond activation mechanism through the electron localization function, charge density difference and crystal orbital Hamiltonian population. Finally, we found the relationship between energy barrier with electronic structure of single-atom catalyst, such as electrostatic potential and system electronegativity. This work can not only provide new ideas for the optimize of dehydrogenation catalyst, but also lay a theoretical foundation for the design of novel energy storage material.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小小小w完成签到,获得积分10
1秒前
1秒前
2秒前
上官若男应助志小天采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
SY发布了新的文献求助10
3秒前
4秒前
xiaofanwang完成签到,获得积分10
4秒前
5秒前
5秒前
左丘冥完成签到,获得积分10
6秒前
6秒前
内向的小虾米完成签到,获得积分10
7秒前
迪迪张完成签到,获得积分10
7秒前
桐桐应助小张同学采纳,获得10
7秒前
阳6完成签到 ,获得积分10
7秒前
xiaojin完成签到,获得积分10
8秒前
liu完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
大锅逢饭完成签到,获得积分10
8秒前
8秒前
志小天完成签到,获得积分10
9秒前
10秒前
自觉志泽发布了新的文献求助10
10秒前
ping完成签到 ,获得积分10
10秒前
10秒前
米子哈发布了新的文献求助10
11秒前
华仔应助刘奎冉采纳,获得30
11秒前
研友Bn完成签到 ,获得积分10
12秒前
12秒前
13秒前
xinghe123发布了新的文献求助10
13秒前
酷酷问薇完成签到,获得积分20
14秒前
14秒前
H_完成签到,获得积分10
14秒前
2024dsb完成签到 ,获得积分10
15秒前
15秒前
西行纪发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809