已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Facile dehydrogenation of MgH2 enabled by γ-graphyne based single-atom catalyst

脱氢 氢气储存 密度泛函理论 催化作用 石墨 石墨烯 从头算 化学 材料科学 化学物理 Atom(片上系统) 计算化学 纳米技术 有机化学 计算机科学 嵌入式系统
作者
Shuai Dong,Huan Liu,Xinyuan Liu,Chaoqun Li,Zhengyang Gao,Bogu Liu,Weijie Yang,Ying Wu
出处
期刊:Journal of energy storage [Elsevier]
卷期号:74: 109484-109484 被引量:5
标识
DOI:10.1016/j.est.2023.109484
摘要

Solid-state hydrogen storage is a promising roadmap for the safe and efficient utilization of hydrogen energy due to its moderate operating environment and high hydrogen storage density. However, as a representative solid-state hydrogen storage material, magnesium hydride (MgH2) is significantly limited in the commercial application due to its sluggish kinetics in the dehydrogenation process. Single-atom catalysts are a promising solution to this dilemma. However, the promising graphene-based single-atom catalysts are not yet sufficient to meet the dehydrogenation needs in engineering. To further address this dilemma, we designed a novel γ-graphyne based single-atom catalysts including eight 3d transition metals for promoting the dehydrogenation process of MgH2. Through using spin-polarized density functional theory calculations, we found that the energy barrier for MgH2 dehydrogenation has been significantly reduced even to 0.70 eV, which is far lower than the current graphene-based single-atom catalyst. In detail, the migration trajectory of hydrogen atom in the dehydrogenation process has been observed and confirmed using the ab initio molecular dynamics simulations. To investigate the intrinsic origin for its high catalytic activity of single-atom catalyst, we analyze the HMg bond activation mechanism through the electron localization function, charge density difference and crystal orbital Hamiltonian population. Finally, we found the relationship between energy barrier with electronic structure of single-atom catalyst, such as electrostatic potential and system electronegativity. This work can not only provide new ideas for the optimize of dehydrogenation catalyst, but also lay a theoretical foundation for the design of novel energy storage material.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助阿鲁巴采纳,获得10
1秒前
LLL完成签到,获得积分20
2秒前
w6c6y6发布了新的文献求助20
4秒前
xiaoxiao完成签到 ,获得积分10
4秒前
冬柳发布了新的文献求助10
5秒前
Orange应助无限铸海采纳,获得10
5秒前
科研通AI6应助罗鹏采纳,获得10
7秒前
enenenen89完成签到,获得积分10
10秒前
大模型应助w6c6y6采纳,获得20
11秒前
12秒前
12秒前
ljj001ljj发布了新的文献求助20
14秒前
无限铸海发布了新的文献求助10
18秒前
18秒前
诚心爆米花完成签到 ,获得积分10
21秒前
Ken完成签到,获得积分10
22秒前
流萤发布了新的文献求助10
23秒前
he完成签到,获得积分10
23秒前
笔面第一关注了科研通微信公众号
24秒前
科研通AI6应助Lida采纳,获得10
24秒前
25秒前
情怀应助huayi采纳,获得10
25秒前
流萤完成签到,获得积分10
30秒前
30秒前
天天快乐应助Hairee采纳,获得10
31秒前
Wuyt给Cj的求助进行了留言
33秒前
宇宇完成签到 ,获得积分10
34秒前
完美世界应助流萤采纳,获得10
34秒前
张怡博发布了新的文献求助10
36秒前
36秒前
FashionBoy应助Z1070741749采纳,获得10
37秒前
陈熙完成签到 ,获得积分10
37秒前
一粟完成签到 ,获得积分10
40秒前
李雷完成签到 ,获得积分10
42秒前
Bressanone发布了新的文献求助10
43秒前
43秒前
44秒前
tianshanfeihe完成签到 ,获得积分10
45秒前
Z1070741749完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522409
求助须知:如何正确求助?哪些是违规求助? 4613410
关于积分的说明 14538809
捐赠科研通 4551142
什么是DOI,文献DOI怎么找? 2494023
邀请新用户注册赠送积分活动 1475048
关于科研通互助平台的介绍 1446408