Intrinsic Highly Conductive and Mechanically Robust Li‐Rich Cathode Materials Enabled by Microstructure Engineering for Enhanced Electrochemical Properties

材料科学 纳米棒 阴极 微观结构 电化学 电解质 化学工程 离子 纳米技术 电极 复合材料 化学 物理 物理化学 量子力学 工程类
作者
Yuanyuan Liu,Chenying Zhang,Liang Lin,Xin Ai,Siwei Gui,Weibin Guo,Saichao Li,Laisen Wang,Hui Yang,Dong‐Liang Peng,Qingshui Xie
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (6) 被引量:35
标识
DOI:10.1002/adfm.202308494
摘要

Abstract Li‐rich Mn‐based layered oxides (LRLO) are considered promising cathode candidates for high‐energy‐density lithium‐ion batteries (LIBs). However, severe capacity/voltage fading and poor rate performance hinder their practical application. Herein, a microstructure engineering strategy is put forward to design the unique bayberry‐like Li 1.2 Mn 0.54 Co 0.13 Ni 0.13 O 2 (LRLO‐S) cathode material, composed of a spherical core and the shell self‐assembled by radially oriented nanorods with intrinsic rapid electron and ion transport capability, benefiting to increase the electrochemical reaction kinetics during cycling. Meanwhile, the radial texturing of the nanorods in shell layer forms a natural protective interface constituted by thermodynamically stable (003) planes, resisting electrolyte corrosion effectively. Furthermore, the configuration of orderly self‐assembled nanorods can effectively regulate the stress and strain to stabilize the lattice framework, finally improves the cycling stability of LRLO. As a result, the elaborately designed LRLO‐S cathode delivers remarkable high‐rate long‐term cycling stability with high capacity retentions of 91.2% after 500 cycles at 1 C and of 81.3% after 1000 cycles at 5 C. More importantly, the voltage stability is enhanced greatly with a superior retention of 89.6% after cycling 500 times at 1 C. Here a valuable strategy is provided to develop intrinsic mechanically robust high‐performance Li‐rich‐layered cathode materials for advanced LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
迷路枫发布了新的文献求助10
1秒前
2秒前
2秒前
杨乃彬完成签到,获得积分10
3秒前
3秒前
慕青应助专注若之采纳,获得10
3秒前
小小淑发布了新的文献求助10
4秒前
小二郎应助崽崽采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
orixero应助七寻采纳,获得10
6秒前
6秒前
仲谋给仲谋的求助进行了留言
6秒前
千折完成签到 ,获得积分10
7秒前
7秒前
yunii发布了新的文献求助10
8秒前
蜡笔小新发布了新的文献求助10
8秒前
英俊的铭应助苹果采纳,获得10
8秒前
9秒前
chenm0333042完成签到,获得积分10
9秒前
Polar_bear完成签到,获得积分10
9秒前
专注若之完成签到,获得积分10
9秒前
完美世界应助大意的酒窝采纳,获得10
11秒前
ZJING9发布了新的文献求助10
12秒前
12秒前
银鱼在游发布了新的文献求助10
12秒前
大个应助longbowtom采纳,获得10
12秒前
NotToday发布了新的文献求助10
13秒前
小小淑完成签到,获得积分20
13秒前
14秒前
15秒前
脑洞疼应助ohooo采纳,获得10
15秒前
HT完成签到,获得积分10
15秒前
16秒前
16秒前
浮游应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646337
求助须知:如何正确求助?哪些是违规求助? 4771156
关于积分的说明 15034647
捐赠科研通 4805157
什么是DOI,文献DOI怎么找? 2569497
邀请新用户注册赠送积分活动 1526514
关于科研通互助平台的介绍 1485836