光热治疗
异质结
材料科学
表面等离子共振
光电子学
光热效应
可见光谱
光催化
吸收(声学)
半导体
辐照
纳米技术
化学工程
光化学
纳米颗粒
化学
物理
催化作用
复合材料
生物化学
核物理学
工程类
作者
Xintong Yao,Ruiqi Zhang,Minghui Zhu,Dafeng Zhang,Xipeng Pu,Junchang Liu,Hengshuai Li,Peiqing Cai
标识
DOI:10.1016/j.apsusc.2023.158890
摘要
Some nonstoichiometric semiconductors exhibit excellent near-infrared (NIR) absorption due to their unique localized surface plasmon resonance (LSPR) effect, which is conducive to improving efficiency of light energy conversion to make them promising candidates for efficient photocatalytic hydrogen (H2) evolution. Herein, we constructed a novel 1D/1D MoO3-x/Mn0.3Cd0.7S (MO/MCS) S-scheme heterojunction with LSPR and photothermal double effects for boosted full solar spectrum-driven H2 evolution. The light absorption of MO/MCS was expanded to NIR region through the LSPR effect of MO. Meanwhile, the impressive photothermal effect of MO can increase the surface temperature of the photocatalyst particles under light irradiation, which can further accelerate the photoreaction. According to the experimental and theoretical calculation results, the formation of S-scheme heterojunction was confirmed, which boosted the separation of photo-induced carriers. Consequently, the H2 evolution performance of judiciously designed MO/MCS composites was significantly enhanced with an optimal H2 evolution of 2.235 mmol·g−1·h−1, 30.6 times that of pure MCS. This work provides a valuable insight into the development of highly efficient full solar spectrum-driven photocatalysts through utilizing the synergetic effects of LSPR effect, photothermal effect, and S-scheme heterojunction.
科研通智能强力驱动
Strongly Powered by AbleSci AI