Immunogenic cell death-based prognostic model for predicting the response to immunotherapy and common therapy in lung adenocarcinoma

免疫疗法 医学 肿瘤科 肺癌 腺癌 内科学 比例危险模型 生存分析 子群分析 癌症 荟萃分析
作者
Xiang Zhang,Ran Xu,Tiecheng Lu,Chenghao Wang,Xiaoyan Chang,Bo Peng,Zhiping Shen,Lingqi Yao,Kaiyu Wang,Chengyu Xu,Jun Shi,Ren Zhang,Jichun Zhao,Linyou Zhang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1)
标识
DOI:10.1038/s41598-023-40592-w
摘要

Abstract Lung adenocarcinoma (LUAD) is a malignant tumor in the respiratory system. The efficacy of current treatment modalities varies greatly, and individualization is evident. Therefore, finding biomarkers for predicting treatment prognosis and providing reference and guidance for formulating treatment options is urgent. Cancer immunotherapy has made distinct progress in the past decades and has a significant effect on LUAD. Immunogenic Cell Death (ICD) can reshape the tumor’s immune microenvironment, contributing to immunotherapy. Thus, exploring ICD biomarkers to construct a prognostic model might help individualized treatments. We used a lung adenocarcinoma (LUAD) dataset to identify ICD-related differentially expressed genes (DEGs). Then, these DEGs were clustered and divided into subgroups. We also performed variance analysis in different dimensions. Further, we established and validated a prognostic model by LASSO Cox regression analysis. The risk score in this model was used to evaluate prognostic differences by survival analysis. The treatment prognosis of various therapies were also predicted. LUAD samples were divided into two subgroups. The ICD-high subgroup was related to an immune-hot phenotype more sensitive to immunotherapy. The prognostic model was constructed based on six ICD-related DEGs. We found that high-risk score patients responded better to immunotherapy. The ICD prognostic model was validated as a standalone factor to evaluate the ICD subtype of individual LUAD patients, which might contribute to more effective therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fyjfyjfyj发布了新的文献求助10
1秒前
桐桐应助ZG采纳,获得10
2秒前
decade关注了科研通微信公众号
2秒前
李明星完成签到,获得积分10
2秒前
声声慢发布了新的文献求助10
2秒前
2秒前
Yue发布了新的文献求助10
3秒前
浮游应助认真小刺猬采纳,获得10
3秒前
3秒前
4秒前
今后应助十二采纳,获得10
4秒前
4秒前
wanci应助清爽冰夏采纳,获得10
4秒前
4秒前
5秒前
CipherSage应助hardtime采纳,获得10
5秒前
今后应助灰灰12138采纳,获得10
5秒前
分析发布了新的文献求助20
6秒前
二号发布了新的文献求助10
7秒前
锦城纯契完成签到 ,获得积分10
7秒前
王昕钥完成签到,获得积分10
7秒前
qingli完成签到,获得积分10
7秒前
科研通AI6应助桃子采纳,获得10
8秒前
李健的小迷弟应助11采纳,获得10
9秒前
Zxc发布了新的文献求助10
9秒前
科研cc发布了新的文献求助10
9秒前
orixero应助赵琪采纳,获得10
9秒前
lyy66964193完成签到,获得积分10
9秒前
10秒前
dyy发布了新的文献求助10
10秒前
11秒前
子车茗应助fs采纳,获得30
11秒前
方小上发布了新的文献求助10
11秒前
11秒前
柒七完成签到,获得积分10
11秒前
bkagyin应助二号采纳,获得10
11秒前
weimu发布了新的文献求助10
12秒前
12秒前
嗯qq完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111605
求助须知:如何正确求助?哪些是违规求助? 4319748
关于积分的说明 13459552
捐赠科研通 4150543
什么是DOI,文献DOI怎么找? 2274267
邀请新用户注册赠送积分活动 1276216
关于科研通互助平台的介绍 1214407