Immunogenic cell death-based prognostic model for predicting the response to immunotherapy and common therapy in lung adenocarcinoma

免疫疗法 医学 肿瘤科 肺癌 腺癌 内科学 比例危险模型 生存分析 子群分析 癌症 荟萃分析
作者
Xiang Zhang,Ran Xu,Tiecheng Lu,Chenghao Wang,Xiaoyan Chang,Bo Peng,Zhiping Shen,Lingqi Yao,Kaiyu Wang,Chengyu Xu,Jun Shi,Ren Zhang,Jichun Zhao,Linyou Zhang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1)
标识
DOI:10.1038/s41598-023-40592-w
摘要

Abstract Lung adenocarcinoma (LUAD) is a malignant tumor in the respiratory system. The efficacy of current treatment modalities varies greatly, and individualization is evident. Therefore, finding biomarkers for predicting treatment prognosis and providing reference and guidance for formulating treatment options is urgent. Cancer immunotherapy has made distinct progress in the past decades and has a significant effect on LUAD. Immunogenic Cell Death (ICD) can reshape the tumor’s immune microenvironment, contributing to immunotherapy. Thus, exploring ICD biomarkers to construct a prognostic model might help individualized treatments. We used a lung adenocarcinoma (LUAD) dataset to identify ICD-related differentially expressed genes (DEGs). Then, these DEGs were clustered and divided into subgroups. We also performed variance analysis in different dimensions. Further, we established and validated a prognostic model by LASSO Cox regression analysis. The risk score in this model was used to evaluate prognostic differences by survival analysis. The treatment prognosis of various therapies were also predicted. LUAD samples were divided into two subgroups. The ICD-high subgroup was related to an immune-hot phenotype more sensitive to immunotherapy. The prognostic model was constructed based on six ICD-related DEGs. We found that high-risk score patients responded better to immunotherapy. The ICD prognostic model was validated as a standalone factor to evaluate the ICD subtype of individual LUAD patients, which might contribute to more effective therapies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一个果儿应助柳波采纳,获得30
刚刚
Geng完成签到,获得积分10
1秒前
2秒前
花生王子完成签到 ,获得积分0
3秒前
咸鱼大帝完成签到,获得积分10
3秒前
叫滚滚发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
大个应助xyyt采纳,获得10
6秒前
6秒前
知了发布了新的文献求助10
7秒前
8秒前
温骐华发布了新的文献求助10
8秒前
8秒前
8秒前
CipherSage应助yjx采纳,获得10
9秒前
Bai0703_完成签到,获得积分10
9秒前
10秒前
Fenta发布了新的文献求助10
10秒前
11秒前
12秒前
坚强的隶发布了新的文献求助10
12秒前
FuuKa发布了新的文献求助10
13秒前
14秒前
无花果应助霸气秀采纳,获得10
14秒前
五颜六色的白完成签到,获得积分10
14秒前
俺还是发布了新的文献求助10
14秒前
14秒前
16秒前
Solar energy完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
hhh完成签到,获得积分10
18秒前
18秒前
sunchang发布了新的文献求助10
19秒前
19秒前
万能图书馆应助柳波采纳,获得30
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742790
求助须知:如何正确求助?哪些是违规求助? 5410347
关于积分的说明 15345735
捐赠科研通 4883864
什么是DOI,文献DOI怎么找? 2625403
邀请新用户注册赠送积分活动 1574207
关于科研通互助平台的介绍 1531165