Machine learning revealing key factors influencing HONO chemistry in Beijing during heating and non-heating periods

亚硝酸 北京 环境科学 光解 污染物 激进的 大气科学 气象学 化学 环境化学 光化学 有机化学 物理 政治学 法学 中国
作者
Wenqian Zhang,Shengrui Tong,Siqi Hou,Pusheng Zhao,Yuepeng Pan,Lili Wang,Mengtian Cheng,Dongsheng Ji,Guiqian Tang,Bo Hu,Xin Li,Maofa Ge
出处
期刊:Atmospheric Research [Elsevier BV]
卷期号:298: 107130-107130 被引量:1
标识
DOI:10.1016/j.atmosres.2023.107130
摘要

Nitrous acid (HONO) is of great interest due to its contribution to hydroxyl (OH) radicals by self-photolysis. Nowadays, machine learning (ML) algorithms are good at capturing complicated non-linear relationships between predictors and dependent variables. Here, using the whole year of 2018 of observed HONO and related pollutant data at an urban site in Beijing, an ML-RF (random forest) model is carried out to predict HONO concentrations and explore the main factors influencing HONO formation mechanisms. ML-RF models show satisfactory performance during the heating, non-heating and whole year periods with R values of 0.95, 0.96 and 0.95, respectively. Primary emissions and diffusion have an obvious influence on ambient HONO during the heating period, while chemical formation processes such as NO2 heterogeneous reaction and photolysis of nitrate are important for HONO during the non-heating period with higher RH and stronger solar intensity. O3 and NH3 are the most important variables for HONO in both periods, indicating the close relationship of HONO with atmospheric oxidation and the important role of NH3 in HONO formation processes. Although there are deviations due to some variability in HONO formation mechanisms between years, ML-RF models based on 2018 data are able to roughly predict HONO for three periods in 2017 and 2021. Overall, machine learning with limited meteorological and pollutant parameters offers great advantages in HONO prediction, and it can also provide some clues to improve the chemical mechanisms of HONO by finding related variables of ambient HONO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
utln完成签到,获得积分10
刚刚
希望天下0贩的0应助许愿采纳,获得10
刚刚
默默尔安发布了新的文献求助10
1秒前
赵yy应助minus采纳,获得10
1秒前
1秒前
sunshine完成签到,获得积分10
2秒前
SciGPT应助寒冷夜白采纳,获得10
2秒前
2秒前
luke17743508621完成签到 ,获得积分10
3秒前
NaNA发布了新的文献求助10
3秒前
4秒前
刘锦嘉应助古德猫采纳,获得10
4秒前
5秒前
Leticia完成签到,获得积分10
5秒前
善学以致用应助王大炮采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
彭于晏应助90099采纳,获得10
8秒前
爱芹发布了新的文献求助10
8秒前
李昱发布了新的文献求助10
8秒前
Become发布了新的文献求助10
8秒前
宁子发布了新的文献求助10
8秒前
8秒前
英姑应助wllllll采纳,获得10
9秒前
JYL发布了新的文献求助10
9秒前
筱xiao完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
张三完成签到,获得积分20
10秒前
11秒前
11秒前
12秒前
fireking_sid发布了新的文献求助10
12秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239316
求助须知:如何正确求助?哪些是违规求助? 4406741
关于积分的说明 13715300
捐赠科研通 4275149
什么是DOI,文献DOI怎么找? 2345932
邀请新用户注册赠送积分活动 1343067
关于科研通互助平台的介绍 1301010