Machine learning revealing key factors influencing HONO chemistry in Beijing during heating and non-heating periods

亚硝酸 北京 环境科学 光解 污染物 激进的 大气科学 气象学 化学 环境化学 光化学 有机化学 物理 政治学 法学 中国
作者
Wenqian Zhang,Shengrui Tong,Siqi Hou,Pusheng Zhao,Yuepeng Pan,Lili Wang,Mengtian Cheng,Dongsheng Ji,Guiqian Tang,Bo Hu,Xin Li,Maofa Ge
出处
期刊:Atmospheric Research [Elsevier BV]
卷期号:298: 107130-107130 被引量:1
标识
DOI:10.1016/j.atmosres.2023.107130
摘要

Nitrous acid (HONO) is of great interest due to its contribution to hydroxyl (OH) radicals by self-photolysis. Nowadays, machine learning (ML) algorithms are good at capturing complicated non-linear relationships between predictors and dependent variables. Here, using the whole year of 2018 of observed HONO and related pollutant data at an urban site in Beijing, an ML-RF (random forest) model is carried out to predict HONO concentrations and explore the main factors influencing HONO formation mechanisms. ML-RF models show satisfactory performance during the heating, non-heating and whole year periods with R values of 0.95, 0.96 and 0.95, respectively. Primary emissions and diffusion have an obvious influence on ambient HONO during the heating period, while chemical formation processes such as NO2 heterogeneous reaction and photolysis of nitrate are important for HONO during the non-heating period with higher RH and stronger solar intensity. O3 and NH3 are the most important variables for HONO in both periods, indicating the close relationship of HONO with atmospheric oxidation and the important role of NH3 in HONO formation processes. Although there are deviations due to some variability in HONO formation mechanisms between years, ML-RF models based on 2018 data are able to roughly predict HONO for three periods in 2017 and 2021. Overall, machine learning with limited meteorological and pollutant parameters offers great advantages in HONO prediction, and it can also provide some clues to improve the chemical mechanisms of HONO by finding related variables of ambient HONO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助ly采纳,获得10
刚刚
柯一一应助醉仙采纳,获得10
1秒前
wanci应助TMOMOR采纳,获得10
1秒前
共享精神应助还有糕手采纳,获得10
2秒前
3秒前
5秒前
5秒前
小雨点完成签到 ,获得积分10
5秒前
6秒前
王九八发布了新的文献求助10
7秒前
8秒前
高大的冰双完成签到,获得积分10
8秒前
9秒前
英姑应助等等采纳,获得10
9秒前
10秒前
wjm发布了新的文献求助10
11秒前
11秒前
善学以致用应助hsut-czq采纳,获得10
11秒前
12秒前
Akim应助pirongshi采纳,获得10
12秒前
梦若浮生发布了新的文献求助10
14秒前
yznfly应助逆行的百合采纳,获得30
14秒前
无限尔云发布了新的文献求助10
15秒前
lhyqqt发布了新的文献求助10
16秒前
16秒前
Norzing发布了新的文献求助10
18秒前
刘某发布了新的文献求助10
18秒前
我是老大应助天涯采纳,获得10
18秒前
18秒前
wjm完成签到,获得积分10
19秒前
revew666完成签到,获得积分10
20秒前
英姑应助周可以采纳,获得10
23秒前
23秒前
等等完成签到,获得积分10
25秒前
飞云发布了新的文献求助10
25秒前
26秒前
28秒前
王九八发布了新的文献求助20
29秒前
闪蓝之光完成签到,获得积分10
29秒前
TMOMOR发布了新的文献求助10
30秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371