Machine learning revealing key factors influencing HONO chemistry in Beijing during heating and non-heating periods

亚硝酸 北京 环境科学 光解 污染物 激进的 大气科学 气象学 化学 环境化学 光化学 有机化学 物理 政治学 法学 中国
作者
Wenqian Zhang,Shengrui Tong,Siqi Hou,Pusheng Zhao,Yuepeng Pan,Lili Wang,Mengtian Cheng,Dongsheng Ji,Guiqian Tang,Bo Hu,Xin Li,Maofa Ge
出处
期刊:Atmospheric Research [Elsevier BV]
卷期号:298: 107130-107130 被引量:1
标识
DOI:10.1016/j.atmosres.2023.107130
摘要

Nitrous acid (HONO) is of great interest due to its contribution to hydroxyl (OH) radicals by self-photolysis. Nowadays, machine learning (ML) algorithms are good at capturing complicated non-linear relationships between predictors and dependent variables. Here, using the whole year of 2018 of observed HONO and related pollutant data at an urban site in Beijing, an ML-RF (random forest) model is carried out to predict HONO concentrations and explore the main factors influencing HONO formation mechanisms. ML-RF models show satisfactory performance during the heating, non-heating and whole year periods with R values of 0.95, 0.96 and 0.95, respectively. Primary emissions and diffusion have an obvious influence on ambient HONO during the heating period, while chemical formation processes such as NO2 heterogeneous reaction and photolysis of nitrate are important for HONO during the non-heating period with higher RH and stronger solar intensity. O3 and NH3 are the most important variables for HONO in both periods, indicating the close relationship of HONO with atmospheric oxidation and the important role of NH3 in HONO formation processes. Although there are deviations due to some variability in HONO formation mechanisms between years, ML-RF models based on 2018 data are able to roughly predict HONO for three periods in 2017 and 2021. Overall, machine learning with limited meteorological and pollutant parameters offers great advantages in HONO prediction, and it can also provide some clues to improve the chemical mechanisms of HONO by finding related variables of ambient HONO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助靓丽幻梅采纳,获得10
2秒前
友好板栗发布了新的文献求助10
2秒前
一米八发布了新的文献求助10
4秒前
bendanzxx发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
阳光保温杯完成签到 ,获得积分10
6秒前
NexusExplorer应助怪兽小泥巴采纳,获得10
7秒前
上官若男应助linnn采纳,获得30
8秒前
笨笨灵雁完成签到,获得积分10
9秒前
10秒前
FZz完成签到,获得积分10
11秒前
11秒前
11发布了新的文献求助10
12秒前
13秒前
小土狗完成签到,获得积分10
13秒前
13秒前
房山芙完成签到,获得积分10
14秒前
丁博完成签到,获得积分10
15秒前
16秒前
16秒前
一米八完成签到,获得积分10
16秒前
16秒前
甜想完成签到,获得积分10
16秒前
怪兽小泥巴完成签到,获得积分10
20秒前
21秒前
唐茂铭发布了新的文献求助10
22秒前
王子完成签到,获得积分10
23秒前
23秒前
自然的衫完成签到 ,获得积分10
24秒前
24秒前
maguodrgon发布了新的文献求助40
26秒前
浮游应助nelson采纳,获得10
26秒前
小马甲应助Dan采纳,获得10
26秒前
28秒前
28秒前
蜉蝣发布了新的文献求助10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4915038
求助须知:如何正确求助?哪些是违规求助? 4189167
关于积分的说明 13010035
捐赠科研通 3958176
什么是DOI,文献DOI怎么找? 2170103
邀请新用户注册赠送积分活动 1188349
关于科研通互助平台的介绍 1096077