Machine learning revealing key factors influencing HONO chemistry in Beijing during heating and non-heating periods

亚硝酸 北京 环境科学 光解 污染物 激进的 大气科学 气象学 化学 环境化学 光化学 有机化学 物理 政治学 中国 法学
作者
Wenqian Zhang,Shengrui Tong,Siqi Hou,Pusheng Zhao,Yuepeng Pan,Lili Wang,Mengtian Cheng,Dongsheng Ji,Guiqian Tang,Bo Hu,Xin Li,Maofa Ge
出处
期刊:Atmospheric Research [Elsevier]
卷期号:298: 107130-107130 被引量:1
标识
DOI:10.1016/j.atmosres.2023.107130
摘要

Nitrous acid (HONO) is of great interest due to its contribution to hydroxyl (OH) radicals by self-photolysis. Nowadays, machine learning (ML) algorithms are good at capturing complicated non-linear relationships between predictors and dependent variables. Here, using the whole year of 2018 of observed HONO and related pollutant data at an urban site in Beijing, an ML-RF (random forest) model is carried out to predict HONO concentrations and explore the main factors influencing HONO formation mechanisms. ML-RF models show satisfactory performance during the heating, non-heating and whole year periods with R values of 0.95, 0.96 and 0.95, respectively. Primary emissions and diffusion have an obvious influence on ambient HONO during the heating period, while chemical formation processes such as NO2 heterogeneous reaction and photolysis of nitrate are important for HONO during the non-heating period with higher RH and stronger solar intensity. O3 and NH3 are the most important variables for HONO in both periods, indicating the close relationship of HONO with atmospheric oxidation and the important role of NH3 in HONO formation processes. Although there are deviations due to some variability in HONO formation mechanisms between years, ML-RF models based on 2018 data are able to roughly predict HONO for three periods in 2017 and 2021. Overall, machine learning with limited meteorological and pollutant parameters offers great advantages in HONO prediction, and it can also provide some clues to improve the chemical mechanisms of HONO by finding related variables of ambient HONO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gffh完成签到,获得积分10
4秒前
stupid完成签到,获得积分20
4秒前
可爱的函函应助ysta采纳,获得10
6秒前
森木关注了科研通微信公众号
6秒前
阿克图尔斯·蒙斯克给阿克图尔斯·蒙斯克的求助进行了留言
6秒前
NIKO发布了新的文献求助10
7秒前
11秒前
Dusk大寺柯发布了新的文献求助10
11秒前
stupid发布了新的文献求助10
12秒前
12秒前
彭于晏应助江桥采纳,获得10
13秒前
万能的土豆完成签到 ,获得积分10
16秒前
nice1334发布了新的文献求助10
16秒前
16秒前
CSUST科研一哥应助lull采纳,获得10
18秒前
天天快乐应助lull采纳,获得10
18秒前
兜兜应助一头小飞猪采纳,获得10
18秒前
19秒前
cyz012568完成签到,获得积分10
19秒前
lj完成签到 ,获得积分10
20秒前
ysta发布了新的文献求助10
20秒前
22秒前
22秒前
akiyy完成签到,获得积分10
24秒前
我是雷锋完成签到,获得积分10
24秒前
小田完成签到 ,获得积分10
26秒前
木子发布了新的文献求助10
27秒前
平凡之路应助周胜采纳,获得10
28秒前
28秒前
亿点快乐发布了新的文献求助10
28秒前
周芷卉完成签到 ,获得积分10
29秒前
29秒前
aaaaaah完成签到,获得积分10
31秒前
江桥发布了新的文献求助10
34秒前
丘比特应助LR123采纳,获得10
36秒前
潇洒的白昼完成签到,获得积分10
37秒前
Mintkarla完成签到,获得积分10
38秒前
隐形曼青应助五月拾旧采纳,获得10
39秒前
JamesPei应助baixue采纳,获得10
40秒前
森木发布了新的文献求助10
43秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233285
求助须知:如何正确求助?哪些是违规求助? 2879856
关于积分的说明 8212977
捐赠科研通 2547323
什么是DOI,文献DOI怎么找? 1376744
科研通“疑难数据库(出版商)”最低求助积分说明 647692
邀请新用户注册赠送积分活动 623115