The dark side of AI-enabled HRM on employees based on AI algorithmic features

独创性 知识管理 大裂谷 计算机科学 人力资源管理 价值(数学) 机制(生物学) 领域(数学) 人工智能 心理学 数据科学 认识论 社会心理学 创造力 机器学习 数学 哲学 物理 天文 纯数学
作者
Yu Zhou,Wang Li-jun,Wansi Chen
出处
期刊:Journal of Organizational Change Management [Emerald (MCB UP)]
卷期号:36 (7): 1222-1241 被引量:7
标识
DOI:10.1108/jocm-10-2022-0308
摘要

Purpose AI is an emerging tool in HRM practices that has drawn increasing attention from HRM researchers and HRM practitioners. While there is little doubt that AI-enabled HRM exerts positive effects, it also triggers negative influences. Gaining a better understanding of the dark side of AI-enabled HRM holds great significance for managerial implementation and for enriching related theoretical research. Design/methodology/approach In this study, the authors conducted a systematic review of the published literature in the field of AI-enabled HRM. The systematic literature review enabled the authors to critically analyze, synthesize and profile existing research on the covered topics using transparent and easily reproducible procedures. Findings In this study, the authors used AI algorithmic features (comprehensiveness, instantaneity and opacity) as the main focus to elaborate on the negative effects of AI-enabled HRM. Drawing from inconsistent literature, the authors distinguished between two concepts of AI algorithmic comprehensiveness: comprehensive analysis and comprehensive data collection. The authors also differentiated instantaneity into instantaneous intervention and instantaneous interaction. Opacity was also delineated: hard-to-understand and hard-to-observe. For each algorithmic feature, this study connected organizational behavior theory to AI-enabled HRM research and elaborated on the potential theoretical mechanism of AI-enabled HRM's negative effects on employees. Originality/value Building upon the identified secondary dimensions of AI algorithmic features, the authors elaborate on the potential theoretical mechanism behind the negative effects of AI-enabled HRM on employees. This elaboration establishes a robust theoretical foundation for advancing research in AI-enable HRM. Furthermore, the authors discuss future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷波er应助wzwer123采纳,获得10
2秒前
蟹浦肉发布了新的文献求助10
2秒前
3秒前
我爱学习发布了新的文献求助10
3秒前
明理小凝完成签到 ,获得积分10
4秒前
刘菁发布了新的文献求助10
6秒前
7秒前
顾矜应助chen采纳,获得10
7秒前
8秒前
8秒前
善学以致用应助KEHUGE采纳,获得10
9秒前
13秒前
LLL发布了新的文献求助10
15秒前
打打应助逆时针采纳,获得10
16秒前
李清湛完成签到 ,获得积分10
17秒前
23完成签到,获得积分10
19秒前
小蘑菇应助ccc采纳,获得10
20秒前
酷波er应助漫漫采纳,获得10
23秒前
23秒前
泛滥空间发布了新的文献求助10
24秒前
25秒前
淋湿巴黎完成签到,获得积分10
26秒前
WANG发布了新的文献求助10
28秒前
28秒前
加菲丰丰应助武雨珍采纳,获得20
29秒前
星辰完成签到,获得积分10
32秒前
32秒前
yeah发布了新的文献求助10
34秒前
35秒前
Nick_YFWS发布了新的文献求助20
37秒前
英姑应助OncE采纳,获得10
37秒前
38秒前
39秒前
cocolu应助小星星采纳,获得10
39秒前
领导范儿应助星辰采纳,获得10
39秒前
科研通AI2S应助Wraith采纳,获得30
40秒前
逆时针发布了新的文献求助10
43秒前
43秒前
嘟嘟发布了新的文献求助10
44秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343067
求助须知:如何正确求助?哪些是违规求助? 2970100
关于积分的说明 8642882
捐赠科研通 2650096
什么是DOI,文献DOI怎么找? 1451115
科研通“疑难数据库(出版商)”最低求助积分说明 672099
邀请新用户注册赠送积分活动 661407