Bayesian optimal experimental design for constitutive model calibration

校准 先验与后验 计算机科学 贝叶斯推理 工作流程 实验数据 贝叶斯概率 数据挖掘 算法 模拟 人工智能 数学 统计 哲学 认识论 数据库
作者
Denielle Ricciardi,Daniel Seidl,Brian T. Lester,Amanda Jones,Elizabeth M. C. Jones
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:: 108881-108881
标识
DOI:10.1016/j.ijmecsci.2023.108881
摘要

Computational simulation is increasingly relied upon for high/consequence engineering decisions, which necessitates a high confidence in the calibration of and predictions from complex material models. However, the calibration and validation of material models is often a discrete, multi-stage process that is decoupled from material characterization activities, which means the data collected does not always align with the data that is needed. To address this issue, an integrated workflow for delivering an enhanced characterization and calibration procedure—Interlaced Characterization and Calibration (ICC)—is introduced and demonstrated. This framework leverages Bayesian optimal experimental design (BOED), which creates a line of communication between model calibration needs and data collection capabilities in order to optimize the information content gathered from the experiments for model calibration. Eventually, the ICC framework will be used in quasi real-time to actively control experiments of complex specimens for the calibration of a high-fidelity material model. This work presents the critical first piece of algorithm development and a demonstration in determining the optimal load path of a cruciform specimen with simulated data. Calibration results, obtained via Bayesian inference, from the integrated ICC approach are compared to calibrations performed by choosing the load path a priori based on human intuition, as is traditionally done. The calibration results are communicated through parameter uncertainties which are propagated to the model output space (i.e. stress–strain). In these exemplar problems, data generated within the ICC framework resulted in calibrated model parameters with reduced measures of uncertainty compared to the traditional approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李大刚发布了新的文献求助10
刚刚
黑米粥发布了新的文献求助10
刚刚
程克勤完成签到,获得积分10
1秒前
1秒前
夏林完成签到,获得积分10
1秒前
CSPC001完成签到,获得积分10
2秒前
严易云发布了新的文献求助10
2秒前
3秒前
刻苦以寒发布了新的文献求助10
4秒前
6秒前
sduwl完成签到,获得积分10
6秒前
蓦别完成签到,获得积分10
7秒前
好好发布了新的文献求助10
7秒前
7秒前
ww完成签到,获得积分10
9秒前
Annini发布了新的文献求助10
9秒前
马艺帆完成签到,获得积分10
10秒前
DQ发布了新的文献求助10
11秒前
脑洞疼应助陈乐宁2024采纳,获得10
11秒前
111发布了新的文献求助10
11秒前
李爱国应助诚心的雅容采纳,获得10
13秒前
华仔应助卢飞薇采纳,获得10
13秒前
13秒前
corazon完成签到,获得积分10
14秒前
AeroY完成签到,获得积分10
14秒前
小二郎应助嘟嘟金子采纳,获得10
15秒前
waigagaga完成签到,获得积分10
15秒前
巨人肩上完成签到,获得积分10
17秒前
17秒前
xjcy应助李雨轩采纳,获得20
17秒前
18秒前
黑米粥完成签到,获得积分0
18秒前
每文完成签到,获得积分10
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
充电宝应助科研通管家采纳,获得10
19秒前
积极晓绿应助科研通管家采纳,获得20
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
DQ完成签到,获得积分10
19秒前
大个应助科研通管家采纳,获得10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135616
求助须知:如何正确求助?哪些是违规求助? 2786482
关于积分的说明 7777675
捐赠科研通 2442483
什么是DOI,文献DOI怎么找? 1298583
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847