Bayesian optimal experimental design for constitutive model calibration

校准 先验与后验 计算机科学 贝叶斯推理 工作流程 实验数据 贝叶斯概率 数据挖掘 算法 模拟 人工智能 数学 统计 哲学 认识论 数据库
作者
Denielle Ricciardi,Daniel Seidl,Brian T. Lester,Amanda Jones,Elizabeth M. C. Jones
出处
期刊:International Journal of Mechanical Sciences [Elsevier BV]
卷期号:: 108881-108881
标识
DOI:10.1016/j.ijmecsci.2023.108881
摘要

Computational simulation is increasingly relied upon for high/consequence engineering decisions, which necessitates a high confidence in the calibration of and predictions from complex material models. However, the calibration and validation of material models is often a discrete, multi-stage process that is decoupled from material characterization activities, which means the data collected does not always align with the data that is needed. To address this issue, an integrated workflow for delivering an enhanced characterization and calibration procedure—Interlaced Characterization and Calibration (ICC)—is introduced and demonstrated. This framework leverages Bayesian optimal experimental design (BOED), which creates a line of communication between model calibration needs and data collection capabilities in order to optimize the information content gathered from the experiments for model calibration. Eventually, the ICC framework will be used in quasi real-time to actively control experiments of complex specimens for the calibration of a high-fidelity material model. This work presents the critical first piece of algorithm development and a demonstration in determining the optimal load path of a cruciform specimen with simulated data. Calibration results, obtained via Bayesian inference, from the integrated ICC approach are compared to calibrations performed by choosing the load path a priori based on human intuition, as is traditionally done. The calibration results are communicated through parameter uncertainties which are propagated to the model output space (i.e. stress–strain). In these exemplar problems, data generated within the ICC framework resulted in calibrated model parameters with reduced measures of uncertainty compared to the traditional approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lu完成签到,获得积分10
2秒前
wycwkxjjya完成签到 ,获得积分10
3秒前
4秒前
4秒前
曾云璐发布了新的文献求助10
6秒前
Orange应助等待的谷波采纳,获得10
7秒前
8秒前
esyncoms发布了新的文献求助10
8秒前
zg发布了新的文献求助10
9秒前
UAU发布了新的文献求助10
9秒前
sha303270发布了新的文献求助10
14秒前
小二郎应助唧唧采纳,获得10
14秒前
14秒前
14秒前
15秒前
16秒前
梁三岁完成签到,获得积分10
18秒前
年轻的冰海完成签到,获得积分10
18秒前
TIMF14完成签到,获得积分10
19秒前
21秒前
清脆南蕾发布了新的文献求助10
21秒前
22秒前
24秒前
情怀应助bias采纳,获得10
26秒前
唧唧发布了新的文献求助10
26秒前
颜苏完成签到,获得积分10
27秒前
hm完成签到,获得积分10
27秒前
文艺夏青完成签到,获得积分10
29秒前
29秒前
31秒前
111咩咩完成签到,获得积分10
33秒前
33秒前
gnufgg完成签到,获得积分10
35秒前
文艺夏青发布了新的文献求助10
36秒前
Irene完成签到 ,获得积分10
36秒前
SC关闭了SC文献求助
37秒前
丘比特应助zg采纳,获得10
37秒前
38秒前
pan发布了新的文献求助10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967279
求助须知:如何正确求助?哪些是违规求助? 3512575
关于积分的说明 11164253
捐赠科研通 3247522
什么是DOI,文献DOI怎么找? 1793850
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804495