Bayesian optimal experimental design for constitutive model calibration

校准 先验与后验 计算机科学 贝叶斯推理 工作流程 实验数据 贝叶斯概率 数据挖掘 算法 模拟 人工智能 数学 统计 哲学 认识论 数据库
作者
Denielle Ricciardi,Daniel Seidl,Brian T. Lester,Amanda Jones,Elizabeth M. C. Jones
出处
期刊:International Journal of Mechanical Sciences [Elsevier BV]
卷期号:: 108881-108881
标识
DOI:10.1016/j.ijmecsci.2023.108881
摘要

Computational simulation is increasingly relied upon for high/consequence engineering decisions, which necessitates a high confidence in the calibration of and predictions from complex material models. However, the calibration and validation of material models is often a discrete, multi-stage process that is decoupled from material characterization activities, which means the data collected does not always align with the data that is needed. To address this issue, an integrated workflow for delivering an enhanced characterization and calibration procedure—Interlaced Characterization and Calibration (ICC)—is introduced and demonstrated. This framework leverages Bayesian optimal experimental design (BOED), which creates a line of communication between model calibration needs and data collection capabilities in order to optimize the information content gathered from the experiments for model calibration. Eventually, the ICC framework will be used in quasi real-time to actively control experiments of complex specimens for the calibration of a high-fidelity material model. This work presents the critical first piece of algorithm development and a demonstration in determining the optimal load path of a cruciform specimen with simulated data. Calibration results, obtained via Bayesian inference, from the integrated ICC approach are compared to calibrations performed by choosing the load path a priori based on human intuition, as is traditionally done. The calibration results are communicated through parameter uncertainties which are propagated to the model output space (i.e. stress–strain). In these exemplar problems, data generated within the ICC framework resulted in calibrated model parameters with reduced measures of uncertainty compared to the traditional approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助买了束花采纳,获得10
刚刚
高大抽屉完成签到,获得积分20
刚刚
只谈风月应助毕业采纳,获得10
刚刚
犹豫草莓完成签到,获得积分10
刚刚
lucky给lucky的求助进行了留言
1秒前
RXue发布了新的文献求助10
1秒前
啊哈嗯哈哈啊完成签到,获得积分10
1秒前
qianqianqian完成签到,获得积分10
1秒前
JamesPei应助无语的小熊猫采纳,获得10
1秒前
1秒前
科研通AI5应助021采纳,获得10
1秒前
1秒前
123456发布了新的文献求助10
2秒前
2秒前
2秒前
sasa发布了新的文献求助30
2秒前
三生三世缘关注了科研通微信公众号
2秒前
kuki完成签到,获得积分10
2秒前
所所应助boris20082025采纳,获得30
3秒前
dadii完成签到,获得积分10
3秒前
3秒前
六一完成签到,获得积分10
3秒前
小季发布了新的文献求助10
3秒前
linkman发布了新的文献求助100
3秒前
fu发布了新的文献求助10
3秒前
高大抽屉发布了新的文献求助10
3秒前
上官若男应助LEOhard采纳,获得10
3秒前
浮游应助卢军杰采纳,获得10
4秒前
传奇3应助小南采纳,获得10
4秒前
qianqianqian发布了新的文献求助10
4秒前
闹心发布了新的文献求助10
4秒前
5秒前
阳光棉花糖完成签到,获得积分10
5秒前
6秒前
小咩发布了新的文献求助10
6秒前
香蕉梨愁发布了新的文献求助10
6秒前
爆米花应助eco采纳,获得10
7秒前
斌城完成签到,获得积分10
7秒前
猕猴桃发布了新的文献求助10
7秒前
huhaoran完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577004
求助须知:如何正确求助?哪些是违规求助? 3996170
关于积分的说明 12371644
捐赠科研通 3670203
什么是DOI,文献DOI怎么找? 2022678
邀请新用户注册赠送积分活动 1056753
科研通“疑难数据库(出版商)”最低求助积分说明 943949