Development of a predictive model for nephrotoxicity during tacrolimus treatment using machine learning methods

他克莫司 肾毒性 医学 治疗药物监测 相伴的 肌酐 逻辑回归 机器学习 泌尿科 内科学 药代动力学 移植 计算机科学
作者
T. Noda,Shotaro Mizuno,Kaoru Mogushi,Takeshi Hase,Yoritsugu Iida,Katsuyuki Takeuchi,Yasuyoshi Ishiwata,Masashi Nagata
出处
期刊:British Journal of Clinical Pharmacology [Wiley]
卷期号:90 (3): 675-683 被引量:3
标识
DOI:10.1111/bcp.15953
摘要

Abstract Aim When administering tacrolimus, therapeutic drug monitoring is recommended because nephrotoxicity, an adverse event, occurs at supra‐therapeutic whole‐blood concentrations of tacrolimus. However, some patients exhibit nephrotoxicity even at the recommended concentrations, therefore establishing a therapeutic range of tacrolimus concentration for the individual patient is necessary to avoid nephrotoxicity. This study aimed to develop a model for individualized prediction of nephrotoxicity in patients administered tacrolimus. Methods We collected data, such as laboratory test data at tacrolimus initiation, concomitant drugs and tacrolimus whole‐blood concentration, from medical records of patients who received oral tacrolimus. Nephrotoxicity was defined as an increase in serum creatinine levels within 60 days of tacrolimus initiation. We built 13 prediction models based on different machine learning algorithms: logistic regression, support vector machine, gradient‐boosting trees, random forest and neural networks. The best performing model was compared with the conventional model, which classifies patients according to the tacrolimus concentration alone. Results Data from 163 and 41 patients were used to construct models and evaluate the best performing one, respectively. Most of the patients were diagnosed with inflammatory or autoimmune diseases. The best performing model was built using a support vector machine; it showed a high F2 score of 0.750 and outperformed the conventional model (0.500). Conclusions A machine learning model to predict nephrotoxicity in patients during tacrolimus treatment was developed using tacrolimus whole‐blood concentration and other patient data. This model could potentially assist in identifying high‐risk patients who require individualized target therapeutic concentrations of tacrolimus prior to treatment initiation to prevent nephrotoxicity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
科研通AI5应助222采纳,获得10
2秒前
谨慎哈密瓜完成签到,获得积分10
3秒前
核桃发布了新的文献求助30
4秒前
彭于晏应助CHAIZH采纳,获得10
4秒前
钙离子发布了新的文献求助10
5秒前
怂怂鼠完成签到,获得积分10
6秒前
汉堡包应助坚定小熊猫采纳,获得10
7秒前
内向雅香发布了新的文献求助10
7秒前
圈圈儿关注了科研通微信公众号
8秒前
碧蓝醉蝶完成签到 ,获得积分10
8秒前
饼藏发布了新的文献求助10
9秒前
9秒前
CodeCraft应助HHHAN采纳,获得10
9秒前
10秒前
搜集达人应助xpqiu采纳,获得10
10秒前
传奇3应助kaka采纳,获得10
10秒前
11秒前
11秒前
碧蓝醉蝶关注了科研通微信公众号
11秒前
12秒前
12秒前
飘逸的寄柔完成签到,获得积分10
13秒前
14秒前
14秒前
CHAIZH发布了新的文献求助10
15秒前
糖炒栗子发布了新的文献求助10
15秒前
chopin发布了新的文献求助10
16秒前
小晟发布了新的文献求助10
16秒前
小能猫关注了科研通微信公众号
16秒前
16秒前
222发布了新的文献求助10
17秒前
核桃发布了新的文献求助30
18秒前
张奕完成签到,获得积分10
18秒前
water应助linmo采纳,获得10
18秒前
18秒前
chopin完成签到,获得积分10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967654
求助须知:如何正确求助?哪些是违规求助? 3512812
关于积分的说明 11165110
捐赠科研通 3247884
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528