他克莫司
肾毒性
医学
治疗药物监测
相伴的
肌酐
逻辑回归
机器学习
泌尿科
内科学
药代动力学
移植
肾
计算机科学
作者
Takuto Noda,Shotaro Mizuno,Kaoru Mogushi,Takeshi Hase,Yoritsugu Iida,Katsuyuki Takeuchi,Yasuo Ishiwata,Masashi Nagata
摘要
Abstract Aim When administering tacrolimus, therapeutic drug monitoring is recommended because nephrotoxicity, an adverse event, occurs at supra‐therapeutic whole‐blood concentrations of tacrolimus. However, some patients exhibit nephrotoxicity even at the recommended concentrations, therefore establishing a therapeutic range of tacrolimus concentration for the individual patient is necessary to avoid nephrotoxicity. This study aimed to develop a model for individualized prediction of nephrotoxicity in patients administered tacrolimus. Methods We collected data, such as laboratory test data at tacrolimus initiation, concomitant drugs and tacrolimus whole‐blood concentration, from medical records of patients who received oral tacrolimus. Nephrotoxicity was defined as an increase in serum creatinine levels within 60 days of tacrolimus initiation. We built 13 prediction models based on different machine learning algorithms: logistic regression, support vector machine, gradient‐boosting trees, random forest and neural networks. The best performing model was compared with the conventional model, which classifies patients according to the tacrolimus concentration alone. Results Data from 163 and 41 patients were used to construct models and evaluate the best performing one, respectively. Most of the patients were diagnosed with inflammatory or autoimmune diseases. The best performing model was built using a support vector machine; it showed a high F2 score of 0.750 and outperformed the conventional model (0.500). Conclusions A machine learning model to predict nephrotoxicity in patients during tacrolimus treatment was developed using tacrolimus whole‐blood concentration and other patient data. This model could potentially assist in identifying high‐risk patients who require individualized target therapeutic concentrations of tacrolimus prior to treatment initiation to prevent nephrotoxicity.
科研通智能强力驱动
Strongly Powered by AbleSci AI