Development of a predictive model for nephrotoxicity during tacrolimus treatment using machine learning methods

他克莫司 肾毒性 医学 治疗药物监测 相伴的 肌酐 逻辑回归 机器学习 泌尿科 内科学 药代动力学 移植 计算机科学
作者
Takuto Noda,Shotaro Mizuno,Kaoru Mogushi,Takeshi Hase,Yoritsugu Iida,Katsuyuki Takeuchi,Yasuo Ishiwata,Masashi Nagata
出处
期刊:British Journal of Clinical Pharmacology [Wiley]
卷期号:90 (3): 675-683 被引量:1
标识
DOI:10.1111/bcp.15953
摘要

Abstract Aim When administering tacrolimus, therapeutic drug monitoring is recommended because nephrotoxicity, an adverse event, occurs at supra‐therapeutic whole‐blood concentrations of tacrolimus. However, some patients exhibit nephrotoxicity even at the recommended concentrations, therefore establishing a therapeutic range of tacrolimus concentration for the individual patient is necessary to avoid nephrotoxicity. This study aimed to develop a model for individualized prediction of nephrotoxicity in patients administered tacrolimus. Methods We collected data, such as laboratory test data at tacrolimus initiation, concomitant drugs and tacrolimus whole‐blood concentration, from medical records of patients who received oral tacrolimus. Nephrotoxicity was defined as an increase in serum creatinine levels within 60 days of tacrolimus initiation. We built 13 prediction models based on different machine learning algorithms: logistic regression, support vector machine, gradient‐boosting trees, random forest and neural networks. The best performing model was compared with the conventional model, which classifies patients according to the tacrolimus concentration alone. Results Data from 163 and 41 patients were used to construct models and evaluate the best performing one, respectively. Most of the patients were diagnosed with inflammatory or autoimmune diseases. The best performing model was built using a support vector machine; it showed a high F2 score of 0.750 and outperformed the conventional model (0.500). Conclusions A machine learning model to predict nephrotoxicity in patients during tacrolimus treatment was developed using tacrolimus whole‐blood concentration and other patient data. This model could potentially assist in identifying high‐risk patients who require individualized target therapeutic concentrations of tacrolimus prior to treatment initiation to prevent nephrotoxicity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助hwezhu采纳,获得10
1秒前
卡戎529发布了新的文献求助10
10秒前
科研通AI2S应助千年雪松采纳,获得10
11秒前
11秒前
15秒前
wangdake发布了新的文献求助10
16秒前
17秒前
研友_VZG7GZ应助奔奔采纳,获得10
17秒前
酷波er应助灵巧妙芙采纳,获得10
17秒前
18秒前
19秒前
卡戎529发布了新的文献求助10
23秒前
wangdake完成签到,获得积分10
24秒前
义气的灯泡完成签到,获得积分10
24秒前
鉴定为学计算学的完成签到,获得积分10
24秒前
12发布了新的文献求助10
25秒前
HuSP完成签到,获得积分10
27秒前
28秒前
领导范儿应助12采纳,获得10
30秒前
31秒前
李健的粉丝团团长应助linl采纳,获得10
35秒前
HPP123完成签到,获得积分10
36秒前
阔达书雪完成签到,获得积分10
38秒前
40秒前
enndyou完成签到,获得积分10
40秒前
41秒前
41秒前
41秒前
44秒前
激昂的采波完成签到 ,获得积分20
45秒前
Niuma发布了新的文献求助10
46秒前
46秒前
李爱国应助弄香采纳,获得10
47秒前
47秒前
奔奔发布了新的文献求助10
47秒前
hwezhu发布了新的文献求助10
49秒前
求文完成签到,获得积分10
49秒前
yu_z发布了新的文献求助10
49秒前
50秒前
耿耿完成签到,获得积分10
50秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138583
求助须知:如何正确求助?哪些是违规求助? 2789532
关于积分的说明 7791599
捐赠科研通 2445937
什么是DOI,文献DOI怎么找? 1300750
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079