已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of a predictive model for nephrotoxicity during tacrolimus treatment using machine learning methods

他克莫司 肾毒性 医学 治疗药物监测 相伴的 肌酐 逻辑回归 机器学习 泌尿科 内科学 药代动力学 移植 计算机科学
作者
T. Noda,Shotaro Mizuno,Kaoru Mogushi,Takeshi Hase,Yoritsugu Iida,Katsuyuki Takeuchi,Yasuyoshi Ishiwata,Masashi Nagata
出处
期刊:British Journal of Clinical Pharmacology [Wiley]
卷期号:90 (3): 675-683 被引量:3
标识
DOI:10.1111/bcp.15953
摘要

Abstract Aim When administering tacrolimus, therapeutic drug monitoring is recommended because nephrotoxicity, an adverse event, occurs at supra‐therapeutic whole‐blood concentrations of tacrolimus. However, some patients exhibit nephrotoxicity even at the recommended concentrations, therefore establishing a therapeutic range of tacrolimus concentration for the individual patient is necessary to avoid nephrotoxicity. This study aimed to develop a model for individualized prediction of nephrotoxicity in patients administered tacrolimus. Methods We collected data, such as laboratory test data at tacrolimus initiation, concomitant drugs and tacrolimus whole‐blood concentration, from medical records of patients who received oral tacrolimus. Nephrotoxicity was defined as an increase in serum creatinine levels within 60 days of tacrolimus initiation. We built 13 prediction models based on different machine learning algorithms: logistic regression, support vector machine, gradient‐boosting trees, random forest and neural networks. The best performing model was compared with the conventional model, which classifies patients according to the tacrolimus concentration alone. Results Data from 163 and 41 patients were used to construct models and evaluate the best performing one, respectively. Most of the patients were diagnosed with inflammatory or autoimmune diseases. The best performing model was built using a support vector machine; it showed a high F2 score of 0.750 and outperformed the conventional model (0.500). Conclusions A machine learning model to predict nephrotoxicity in patients during tacrolimus treatment was developed using tacrolimus whole‐blood concentration and other patient data. This model could potentially assist in identifying high‐risk patients who require individualized target therapeutic concentrations of tacrolimus prior to treatment initiation to prevent nephrotoxicity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三岁完成签到 ,获得积分10
1秒前
cambridge完成签到,获得积分10
2秒前
2秒前
研友_VZG7GZ应助健壮的芹菜采纳,获得30
2秒前
a61完成签到,获得积分10
3秒前
sev7n520发布了新的文献求助10
8秒前
科研通AI5应助火星上念梦采纳,获得10
9秒前
科研通AI6应助贪玩的德天采纳,获得10
14秒前
Menand完成签到,获得积分10
15秒前
15秒前
QQ完成签到 ,获得积分10
15秒前
16秒前
蝴蝶完成签到 ,获得积分10
17秒前
无花果应助任性的皮皮虾采纳,获得10
17秒前
完美世界应助阿洁采纳,获得10
20秒前
24秒前
26秒前
28秒前
阿洁发布了新的文献求助10
30秒前
迅速的幻雪完成签到 ,获得积分10
31秒前
冷酷哈密瓜完成签到,获得积分10
32秒前
优秀棒棒糖完成签到 ,获得积分10
33秒前
jeff完成签到,获得积分10
33秒前
33秒前
010826完成签到,获得积分10
34秒前
阿洁完成签到,获得积分10
35秒前
SciKid524完成签到 ,获得积分10
35秒前
37秒前
葱葱完成签到,获得积分10
40秒前
lhx完成签到,获得积分10
41秒前
传奇3应助王小杰采纳,获得10
42秒前
酷酷忆安完成签到,获得积分10
44秒前
yuqinghui98完成签到 ,获得积分20
45秒前
47秒前
47秒前
科研通AI2S应助科研通管家采纳,获得20
50秒前
JamesPei应助科研通管家采纳,获得10
51秒前
科研通AI6应助科研通管家采纳,获得10
51秒前
51秒前
jiangn12发布了新的文献求助10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610291
求助须知:如何正确求助?哪些是违规求助? 4016305
关于积分的说明 12434932
捐赠科研通 3697878
什么是DOI,文献DOI怎么找? 2039077
邀请新用户注册赠送积分活动 1071968
科研通“疑难数据库(出版商)”最低求助积分说明 955614