Development of a predictive model for nephrotoxicity during tacrolimus treatment using machine learning methods

他克莫司 肾毒性 医学 治疗药物监测 相伴的 肌酐 逻辑回归 机器学习 泌尿科 内科学 药代动力学 移植 计算机科学
作者
T. Noda,Shotaro Mizuno,Kaoru Mogushi,Takeshi Hase,Yoritsugu Iida,Katsuyuki Takeuchi,Yasuyoshi Ishiwata,Masashi Nagata
出处
期刊:British Journal of Clinical Pharmacology [Wiley]
卷期号:90 (3): 675-683 被引量:3
标识
DOI:10.1111/bcp.15953
摘要

Abstract Aim When administering tacrolimus, therapeutic drug monitoring is recommended because nephrotoxicity, an adverse event, occurs at supra‐therapeutic whole‐blood concentrations of tacrolimus. However, some patients exhibit nephrotoxicity even at the recommended concentrations, therefore establishing a therapeutic range of tacrolimus concentration for the individual patient is necessary to avoid nephrotoxicity. This study aimed to develop a model for individualized prediction of nephrotoxicity in patients administered tacrolimus. Methods We collected data, such as laboratory test data at tacrolimus initiation, concomitant drugs and tacrolimus whole‐blood concentration, from medical records of patients who received oral tacrolimus. Nephrotoxicity was defined as an increase in serum creatinine levels within 60 days of tacrolimus initiation. We built 13 prediction models based on different machine learning algorithms: logistic regression, support vector machine, gradient‐boosting trees, random forest and neural networks. The best performing model was compared with the conventional model, which classifies patients according to the tacrolimus concentration alone. Results Data from 163 and 41 patients were used to construct models and evaluate the best performing one, respectively. Most of the patients were diagnosed with inflammatory or autoimmune diseases. The best performing model was built using a support vector machine; it showed a high F2 score of 0.750 and outperformed the conventional model (0.500). Conclusions A machine learning model to predict nephrotoxicity in patients during tacrolimus treatment was developed using tacrolimus whole‐blood concentration and other patient data. This model could potentially assist in identifying high‐risk patients who require individualized target therapeutic concentrations of tacrolimus prior to treatment initiation to prevent nephrotoxicity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yun发布了新的文献求助10
刚刚
Limerencia发布了新的文献求助10
1秒前
faustss完成签到,获得积分10
1秒前
所所应助wei采纳,获得10
2秒前
sclai完成签到,获得积分10
2秒前
传说奢华发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
蝶梦完成签到,获得积分10
4秒前
5秒前
lx123发布了新的文献求助10
6秒前
善学以致用应助qaq采纳,获得10
7秒前
saber349完成签到,获得积分10
8秒前
哈哈哈发布了新的文献求助10
8秒前
goodbuhui发布了新的文献求助10
9秒前
10秒前
自信花瓣完成签到,获得积分20
10秒前
极速小鱼给极速小鱼的求助进行了留言
11秒前
句号0发布了新的文献求助10
12秒前
12秒前
慕听完成签到,获得积分10
12秒前
yayaha完成签到,获得积分10
12秒前
酷波er应助无风采纳,获得10
12秒前
风清扬应助王雯雯采纳,获得30
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
研0种牛马发布了新的文献求助10
15秒前
15秒前
16秒前
liars完成签到 ,获得积分10
18秒前
烟花应助哈哈哈采纳,获得10
18秒前
18秒前
19秒前
优雅老六发布了新的文献求助10
21秒前
21秒前
22秒前
Irene_Y完成签到,获得积分10
23秒前
wei发布了新的文献求助10
23秒前
gabee完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633272
求助须知:如何正确求助?哪些是违规求助? 4728777
关于积分的说明 14985477
捐赠科研通 4791228
什么是DOI,文献DOI怎么找? 2558809
邀请新用户注册赠送积分活动 1519258
关于科研通互助平台的介绍 1479548