亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of a predictive model for nephrotoxicity during tacrolimus treatment using machine learning methods

他克莫司 肾毒性 医学 治疗药物监测 相伴的 肌酐 逻辑回归 机器学习 泌尿科 内科学 药代动力学 移植 计算机科学
作者
T. Noda,Shotaro Mizuno,Kaoru Mogushi,Takeshi Hase,Yoritsugu Iida,Katsuyuki Takeuchi,Yasuyoshi Ishiwata,Masashi Nagata
出处
期刊:British Journal of Clinical Pharmacology [Wiley]
卷期号:90 (3): 675-683 被引量:3
标识
DOI:10.1111/bcp.15953
摘要

Abstract Aim When administering tacrolimus, therapeutic drug monitoring is recommended because nephrotoxicity, an adverse event, occurs at supra‐therapeutic whole‐blood concentrations of tacrolimus. However, some patients exhibit nephrotoxicity even at the recommended concentrations, therefore establishing a therapeutic range of tacrolimus concentration for the individual patient is necessary to avoid nephrotoxicity. This study aimed to develop a model for individualized prediction of nephrotoxicity in patients administered tacrolimus. Methods We collected data, such as laboratory test data at tacrolimus initiation, concomitant drugs and tacrolimus whole‐blood concentration, from medical records of patients who received oral tacrolimus. Nephrotoxicity was defined as an increase in serum creatinine levels within 60 days of tacrolimus initiation. We built 13 prediction models based on different machine learning algorithms: logistic regression, support vector machine, gradient‐boosting trees, random forest and neural networks. The best performing model was compared with the conventional model, which classifies patients according to the tacrolimus concentration alone. Results Data from 163 and 41 patients were used to construct models and evaluate the best performing one, respectively. Most of the patients were diagnosed with inflammatory or autoimmune diseases. The best performing model was built using a support vector machine; it showed a high F2 score of 0.750 and outperformed the conventional model (0.500). Conclusions A machine learning model to predict nephrotoxicity in patients during tacrolimus treatment was developed using tacrolimus whole‐blood concentration and other patient data. This model could potentially assist in identifying high‐risk patients who require individualized target therapeutic concentrations of tacrolimus prior to treatment initiation to prevent nephrotoxicity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘发布了新的文献求助10
3秒前
千早爱音完成签到 ,获得积分10
6秒前
XuNan完成签到,获得积分10
6秒前
Lucas应助材料生采纳,获得10
10秒前
15秒前
英姑应助科研通管家采纳,获得10
16秒前
16秒前
orixero应助pay采纳,获得10
19秒前
桐桐应助飞鞚采纳,获得10
19秒前
kento发布了新的文献求助10
19秒前
19秒前
SciGPT应助cxin采纳,获得10
24秒前
Ming应助TRNA采纳,获得10
25秒前
材料生发布了新的文献求助10
26秒前
37秒前
隐形的幻梅完成签到,获得积分10
40秒前
ll发布了新的文献求助10
42秒前
50秒前
丁一发布了新的文献求助10
57秒前
57秒前
59秒前
丁一完成签到,获得积分10
1分钟前
飞鞚发布了新的文献求助10
1分钟前
TRISTE发布了新的文献求助20
1分钟前
huxuehong完成签到 ,获得积分10
1分钟前
阿泽完成签到,获得积分10
1分钟前
Ariel完成签到 ,获得积分10
1分钟前
1分钟前
慕青应助TRISTE采纳,获得10
1分钟前
巴音布鲁克完成签到 ,获得积分10
1分钟前
宁过儿发布了新的文献求助20
1分钟前
jinyue完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
allover完成签到,获得积分10
1分钟前
TRISTE发布了新的文献求助10
1分钟前
开朗的千雁完成签到 ,获得积分10
1分钟前
Guts发布了新的文献求助50
1分钟前
无极微光应助TRISTE采纳,获得20
1分钟前
meow完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754802
求助须知:如何正确求助?哪些是违规求助? 5489736
关于积分的说明 15380642
捐赠科研通 4893273
什么是DOI,文献DOI怎么找? 2631842
邀请新用户注册赠送积分活动 1579771
关于科研通互助平台的介绍 1535564