DiffMIC: Dual-Guidance Diffusion Network for Medical Image Classification

计算机科学 人工智能 概率逻辑 上下文图像分类 模式识别(心理学) 机器学习 图像(数学)
作者
Yijun Yang,Huazhu Fu,Angelica I. Avilés-Rivero,Carola‐Bibiane Schönlieb,Lei Zhu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 95-105 被引量:28
标识
DOI:10.1007/978-3-031-43987-2_10
摘要

Diffusion Probabilistic Models have recently shown remarkable performance in generative image modeling, attracting significant attention in the computer vision community. However, while a substantial amount of diffusion-based research has focused on generative tasks, few studies have applied diffusion models to general medical image classification. In this paper, we propose the first diffusion-based model (named DiffMIC) to address general medical image classification by eliminating unexpected noise and perturbations in medical images and robustly capturing semantic representation. To achieve this goal, we devise a dual conditional guidance strategy that conditions each diffusion step with multiple granularities to improve step-wise regional attention. Furthermore, we propose learning the mutual information in each granularity by enforcing Maximum-Mean Discrepancy regularization during the diffusion forward process. We evaluate the effectiveness of our DiffMIC on three medical classification tasks with different image modalities, including placental maturity grading on ultrasound images, skin lesion classification using dermatoscopic images, and diabetic retinopathy grading using fundus images. Our experimental results demonstrate that DiffMIC outperforms state-of-the-art methods by a significant margin, indicating the universality and effectiveness of the proposed model. Our code is publicly available at https://github.com/scott-yjyang/DiffMIC .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
烟花应助灵巧妙柏采纳,获得10
1秒前
zhh完成签到,获得积分10
1秒前
vin应助肥而不腻的羚羊采纳,获得10
3秒前
华仔应助怕孤单的破茧采纳,获得10
4秒前
6秒前
CipherSage应助672采纳,获得10
7秒前
dsjlove完成签到,获得积分20
8秒前
9秒前
等一只ya完成签到,获得积分10
9秒前
虚影完成签到,获得积分10
10秒前
伍铭完成签到 ,获得积分10
13秒前
俏皮的绝山完成签到,获得积分10
13秒前
13秒前
孙燕应助JIANGSHUI采纳,获得50
14秒前
唐禹嘉完成签到 ,获得积分10
15秒前
小超发布了新的文献求助10
18秒前
18秒前
科研通AI5应助YJ888采纳,获得10
19秒前
老干部完成签到,获得积分10
21秒前
随风完成签到,获得积分10
22秒前
23秒前
ycool完成签到 ,获得积分10
24秒前
25秒前
hxy123完成签到,获得积分10
25秒前
25秒前
ablesic.rong发布了新的文献求助10
27秒前
张绵羊完成签到 ,获得积分10
29秒前
香蕉觅云应助booooo采纳,获得10
29秒前
hxy123发布了新的文献求助10
29秒前
30秒前
22222发布了新的文献求助30
31秒前
辛辛应助来来采纳,获得10
32秒前
修辛发布了新的文献求助10
33秒前
34秒前
热心市民小红花应助bbh采纳,获得10
36秒前
ED应助机智太阳采纳,获得10
36秒前
臻灏完成签到,获得积分10
36秒前
英俊白莲完成签到,获得积分10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176