PLSleepNet: A Single Channel EEG Sleep Staging Method Based on Feature Pyramid and Bidirectional LSTM

脑电图 计算机科学 睡眠阶段 睡眠(系统调用) 人工智能 频道(广播) 特征(语言学) 模式识别(心理学) 特征提取 棱锥(几何) 语音识别 多导睡眠图 心理学 神经科学 数学 哲学 操作系统 语言学 计算机网络 几何学
作者
Fatong Wang,Yulin Gong,Yudan Lv,Chang Liu,Bo Han,Tianxing Li
标识
DOI:10.1109/icsp58490.2023.10248895
摘要

Sleep staging refers to dividing the sleep process into different stages based on changes in EEG signals, which is of great significance for diagnosing sleep disorders. In previous studies on automatic sleep staging, researchers have achieved good results using multiple channels of EEG for automatic sleep staging. However, when collecting multi-channel EEG signals, it can bring serious psychological and physiological burden to the subjects, which to some extent affects normal sleep and leads to inaccurate sleep monitoring. Therefore, it is necessary to study automatic sleep staging using single channel EEG. However, the limited sleep information contained in single channel EEG poses a certain challenge in extracting effective features and achieving accurate sleep staging. To this end, we propose a neural network model called PLSleepNet, which utilizes feature pyramids and attention mechanism based Bi-LSTM for automatic sleep staging of single channel EEG. The feature pyramid can fully extract features at different time and frequency scales, maximizing the mining of sleep information in single channel EEG. Based on attention mechanism, Bi-LSTM can capture temporal features and contextual information, and give different weights according to the importance of different sleep stages, thereby improving the accuracy of sleep staging. To verify the effectiveness of PLSleepNet, we conducted experiments on the open dataset Sleep-EDF Database Expanded and compared it with five other staging models. The experimental results show that PLSleepNet outperforms other methods in overall accuracy, MF1 score, and Kappa coefficient, reaching 84.5%, 78.0%, and 0.786.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jack发布了新的文献求助20
刚刚
研友_VZG7GZ应助Christine采纳,获得30
1秒前
3秒前
gxr发布了新的文献求助10
3秒前
李健应助木野狐采纳,获得10
3秒前
5秒前
5秒前
隐形曼青应助打工研狗采纳,获得10
6秒前
研友_VZG7GZ应助成就的书包采纳,获得10
6秒前
may发布了新的文献求助10
8秒前
大个应助小雯钱来采纳,获得10
10秒前
小羽发布了新的文献求助10
10秒前
adong发布了新的文献求助10
11秒前
shanbaibai发布了新的文献求助10
11秒前
12秒前
12秒前
幸福大白发布了新的文献求助10
15秒前
Akim应助亦屿森采纳,获得10
15秒前
这0完成签到,获得积分10
16秒前
JSPAE发布了新的文献求助10
16秒前
研友_ZegWmL发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
坎坎坷坷k完成签到 ,获得积分10
18秒前
gxr完成签到,获得积分20
18秒前
19秒前
JamesPei应助摆哥采纳,获得10
19秒前
科目三应助留你在此处采纳,获得10
20秒前
20秒前
20秒前
21秒前
22秒前
爱听歌的紫菜完成签到,获得积分10
22秒前
JinLi发布了新的文献求助20
22秒前
打工研狗发布了新的文献求助10
22秒前
风来枫去发布了新的文献求助10
24秒前
小雯钱来发布了新的文献求助10
24秒前
25秒前
刻苦语芙发布了新的文献求助10
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248411
求助须知:如何正确求助?哪些是违规求助? 2891780
关于积分的说明 8268752
捐赠科研通 2559811
什么是DOI,文献DOI怎么找? 1388701
科研通“疑难数据库(出版商)”最低求助积分说明 650798
邀请新用户注册赠送积分活动 627775