CCGL-YOLOV5:A cross-modal cross-scale global-local attention YOLOV5 lung tumor detection model

计算机科学 人工智能 特征提取 情态动词 特征(语言学) 钥匙(锁) 融合 模式识别(心理学) 图像融合 多模态 图像(数学) 语言学 化学 哲学 计算机安全 万维网 高分子化学
作者
Tao Zhou,Fengzhen Liu,Xinyu Ye,Hongwei Wang,Huiling Lu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107387-107387 被引量:15
标识
DOI:10.1016/j.compbiomed.2023.107387
摘要

Multimodal medical image detection is a key technology in medical image analysis, which plays an important role in tumor diagnosis. There are different sizes lesions and different shapes lesions in multimodal lung tumor images, which makes it difficult to effectively extract key features of lung tumor lesions.A Cross-modal Cross-scale Clobal-Local Attention YOLOV5 Lung Tumor Detection Model (CCGL-YOLOV5) is proposed in this paper. The main works are as follows: Firstly, the Cross-Modal Fusion Transformer Module (CMFTM) is designed to improve the multimodal key lesion feature extraction ability and fusion ability through the interactive assisted fusion of multimodal features; Secondly, the Global-Local Feature Interaction Module (GLFIM) is proposed to enhance the interaction ability between multimodal global features and multimodal local features through bidirectional interactive branches. Thirdly, the Cross-Scale Attention Fusion Module (CSAFM) is designed to obtain rich multi-scale features through grouping multi-scale attention for feature fusion.The comparison experiments with advanced networks are done. The Acc, Rec, mAP, F1 score and FPS of CCGL-YOLOV5 model on multimodal lung tumor PET/CT dataset are 97.83%, 97.39%, 96.67%, 97.61% and 98.59, respectively; The experimental results show that the performance of CCGL-YOLOV5 model in this paper are better than other typical models.The CCGL-YOLOV5 model can effectively use the multimodal feature information. There are important implications for multimodal medical image research and clinical disease diagnosis in CCGL-YOLOV5 model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听的雪曼完成签到,获得积分10
刚刚
娜娜完成签到,获得积分10
1秒前
自然开山完成签到 ,获得积分10
1秒前
1秒前
如约而至完成签到 ,获得积分10
1秒前
ACTION完成签到,获得积分20
1秒前
英姑应助tesla采纳,获得10
1秒前
蓝荆发布了新的文献求助10
2秒前
谦让柜子完成签到,获得积分10
2秒前
xiaowang完成签到,获得积分10
2秒前
ZBH完成签到 ,获得积分10
3秒前
鸭鸭要学习鸭完成签到 ,获得积分10
3秒前
3秒前
孤独衣完成签到,获得积分10
4秒前
枯藤老柳树完成签到,获得积分10
4秒前
Ww完成签到,获得积分10
4秒前
玊尔完成签到 ,获得积分10
5秒前
剁手党完成签到,获得积分10
5秒前
如意听枫发布了新的文献求助10
5秒前
奔流的河完成签到,获得积分10
5秒前
呆呆子完成签到 ,获得积分10
6秒前
为你博弈完成签到,获得积分10
6秒前
6秒前
赘婿应助研友_ZG4ml8采纳,获得10
6秒前
Camellia完成签到,获得积分10
6秒前
7秒前
anan完成签到 ,获得积分10
8秒前
Ahha完成签到 ,获得积分10
8秒前
九花青完成签到,获得积分10
8秒前
猪8986发布了新的文献求助10
8秒前
完美世界应助小白龙采纳,获得10
9秒前
cty完成签到,获得积分10
9秒前
落雪慕卿颜完成签到,获得积分10
9秒前
9秒前
yaowenjun完成签到,获得积分10
9秒前
cyf完成签到 ,获得积分10
10秒前
一年级完成签到,获得积分10
10秒前
Fe2O3完成签到,获得积分10
11秒前
芋头读文献完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555970
求助须知:如何正确求助?哪些是违规求助? 3131555
关于积分的说明 9391776
捐赠科研通 2831407
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715890