CCGL-YOLOV5:A cross-modal cross-scale global-local attention YOLOV5 lung tumor detection model

计算机科学 人工智能 特征提取 情态动词 特征(语言学) 钥匙(锁) 融合 模式识别(心理学) 图像融合 多模态 图像(数学) 语言学 化学 哲学 计算机安全 万维网 高分子化学
作者
Tao Zhou,Fengzhen Liu,Xinyu Ye,Hongwei Wang,Huiling Lu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107387-107387 被引量:15
标识
DOI:10.1016/j.compbiomed.2023.107387
摘要

Multimodal medical image detection is a key technology in medical image analysis, which plays an important role in tumor diagnosis. There are different sizes lesions and different shapes lesions in multimodal lung tumor images, which makes it difficult to effectively extract key features of lung tumor lesions.A Cross-modal Cross-scale Clobal-Local Attention YOLOV5 Lung Tumor Detection Model (CCGL-YOLOV5) is proposed in this paper. The main works are as follows: Firstly, the Cross-Modal Fusion Transformer Module (CMFTM) is designed to improve the multimodal key lesion feature extraction ability and fusion ability through the interactive assisted fusion of multimodal features; Secondly, the Global-Local Feature Interaction Module (GLFIM) is proposed to enhance the interaction ability between multimodal global features and multimodal local features through bidirectional interactive branches. Thirdly, the Cross-Scale Attention Fusion Module (CSAFM) is designed to obtain rich multi-scale features through grouping multi-scale attention for feature fusion.The comparison experiments with advanced networks are done. The Acc, Rec, mAP, F1 score and FPS of CCGL-YOLOV5 model on multimodal lung tumor PET/CT dataset are 97.83%, 97.39%, 96.67%, 97.61% and 98.59, respectively; The experimental results show that the performance of CCGL-YOLOV5 model in this paper are better than other typical models.The CCGL-YOLOV5 model can effectively use the multimodal feature information. There are important implications for multimodal medical image research and clinical disease diagnosis in CCGL-YOLOV5 model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vegetable_Dog发布了新的文献求助10
1秒前
mahaha完成签到,获得积分10
2秒前
2秒前
SHIINAkaoru完成签到,获得积分20
2秒前
leyellows发布了新的文献求助10
2秒前
李健的粉丝团团长应助zyh采纳,获得10
3秒前
X_nating完成签到,获得积分20
3秒前
杜青发布了新的文献求助10
3秒前
叶问完成签到,获得积分10
4秒前
筱筱竹完成签到,获得积分10
4秒前
开放的桐完成签到,获得积分10
4秒前
子凡完成签到 ,获得积分10
5秒前
JamesPei应助SHIINAkaoru采纳,获得10
6秒前
甜橙完成签到 ,获得积分10
6秒前
机智的雨寒完成签到,获得积分20
6秒前
任性的皮皮虾完成签到,获得积分10
8秒前
可口可乐完成签到,获得积分20
9秒前
9秒前
11完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
情怀应助筱筱竹采纳,获得10
11秒前
issmoon完成签到,获得积分20
13秒前
Seven发布了新的文献求助20
14秒前
可爱的函函应助dochuang采纳,获得10
15秒前
17秒前
沐沐溪三清完成签到,获得积分10
17秒前
starry完成签到 ,获得积分10
18秒前
丁真先生完成签到,获得积分10
18秒前
大胆的爆米花完成签到,获得积分20
19秒前
19秒前
21秒前
21秒前
baibai发布了新的文献求助10
24秒前
ningjianing完成签到,获得积分10
24秒前
李燕君发布了新的文献求助10
25秒前
Wangnono完成签到,获得积分10
25秒前
粗犷的沛容完成签到,获得积分0
25秒前
pluto应助issmoon采纳,获得10
25秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479631
求助须知:如何正确求助?哪些是违规求助? 3070230
关于积分的说明 9117075
捐赠科研通 2761943
什么是DOI,文献DOI怎么找? 1515594
邀请新用户注册赠送积分活动 701041
科研通“疑难数据库(出版商)”最低求助积分说明 699985