Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation in citrus seeds and its application in gene functional analysis

农杆菌 转化(遗传学) 生物 基因 转基因作物 转化效率 转基因 根癌农杆菌 β-葡萄糖醛酸酶 遗传学 植物 基因表达
作者
Min Wang,Yang-Yang Qin,Nan-Nan Wei,Huan-Ying Xue,Wen-Shan Dai
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:14 被引量:5
标识
DOI:10.3389/fpls.2023.1293374
摘要

Highly efficient genetic transformation technology is beneficial for plant gene functional research and molecular improvement breeding. However, the most commonly used Agrobacterium tumefaciens -mediated genetic transformation technology is time-consuming and recalcitrant for some woody plants such as citrus, hampering the high-throughput functional analysis of citrus genes. Thus, we dedicated to develop a rapid, simple, and highly efficient hairy root transformation system induced by Agrobacterium rhizogenes to analyze citrus gene function. In this report, a rapid, universal, and highly efficient hairy root transformation system in citrus seeds was described. Only 15 days were required for the entire workflow and the system was applicable for various citrus genotypes, with a maximum transformation frequency of 96.1%. After optimization, the transformation frequency of Citrus sinensis , which shows the lowest transformation frequency of 52.3% among four citrus genotypes initially, was increased to 71.4% successfully. To test the applicability of the hairy roots transformation system for gene functional analysis of citrus genes, we evaluated the subcellular localization, gene overexpression and gene editing in transformed hairy roots. Compared with the traditional transient transformation system performed in tobacco leaves, the transgenic citrus hairy roots displayed a more clear and specific subcellular fluorescence localization. Transcript levels of genes were significantly increased in overexpressing transgenic citrus hairy roots as compared with wild-type (WT). Additionally, hairy root transformation system in citrus seeds was successful in obtaining transformants with knocked out targets, indicating that the Agrobacterium rhizogenes -mediated transformation enables the CRISPR/Cas9-mediated gene editing. In summary, we established a highly efficient genetic transformation technology with non-tissue-culture in citrus that can be used for functional analysis such as protein subcellular localization, gene overexpression and gene editing. Since the material used for genetic transformation are roots protruding out of citrus seeds, the process of planting seedlings prior to transformation of conventional tissue culture or non-tissue-culture was eliminated, and the experimental time was greatly reduced. We anticipate that this genetic transformation technology will be a valuable tool for routine research of citrus genes in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuyu完成签到 ,获得积分10
刚刚
星辰大海应助Priscilla采纳,获得10
1秒前
chiyudoubao发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
可爱完成签到,获得积分20
2秒前
2秒前
自然篮球完成签到,获得积分10
4秒前
a水爱科研完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
科研通AI2S应助HJX采纳,获得10
6秒前
幽默白亦完成签到,获得积分10
6秒前
milka完成签到,获得积分10
6秒前
科研通AI5应助DXL采纳,获得30
6秒前
老迟到的新竹完成签到,获得积分10
6秒前
dd完成签到,获得积分10
8秒前
无月即明发布了新的文献求助10
8秒前
9秒前
苏苏发布了新的文献求助10
9秒前
优雅友菱完成签到,获得积分10
9秒前
9秒前
9秒前
丹丹完成签到,获得积分10
9秒前
大模型应助聪慧的绿柏采纳,获得10
10秒前
张张发布了新的文献求助10
10秒前
10秒前
10秒前
Dita发布了新的文献求助10
10秒前
叮当猫的悠闲生活完成签到,获得积分10
11秒前
唠叨的天薇完成签到 ,获得积分10
11秒前
风起完成签到 ,获得积分10
11秒前
洇澧完成签到,获得积分10
11秒前
jackgu发布了新的文献求助20
11秒前
炙热的雪糕完成签到,获得积分10
12秒前
Orange应助哔哩哔哩往上爬采纳,获得10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
Raniysun完成签到,获得积分10
12秒前
懒懒洋洋洋完成签到 ,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661763
求助须知:如何正确求助?哪些是违规求助? 3222703
关于积分的说明 9747711
捐赠科研通 2932425
什么是DOI,文献DOI怎么找? 1605644
邀请新用户注册赠送积分活动 758016
科研通“疑难数据库(出版商)”最低求助积分说明 734636