Deep learning assisted sparse array ultrasound imaging

基本事实 人工智能 深度学习 计算机科学 均方误差 一般化 模式识别(心理学) 稀疏逼近 材料科学 生物医学工程 数学 医学 统计 数学分析
作者
Baiyan Qi,Xinyu Tian,Lei Fu,Yi Li,Kai San Chan,Chuxuan Ling,Wonjun Yim,Shiming Zhang,Jesse V. Jokerst
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (10): e0293468-e0293468 被引量:1
标识
DOI:10.1371/journal.pone.0293468
摘要

This study aims to restore grating lobe artifacts and improve the image resolution of sparse array ultrasonography via a deep learning predictive model. A deep learning assisted sparse array was developed using only 64 or 16 channels out of the 128 channels in which the pitch is two or eight times the original array. The deep learning assisted sparse array imaging system was demonstrated on ex vivo porcine teeth. 64- and 16-channel sparse array images were used as the input and corresponding 128-channel dense array images were used as the ground truth. The structural similarity index measure, mean squared error, and peak signal-to-noise ratio of predicted images improved significantly (p < 0.0001). The resolution of predicted images presented close values to ground truth images (0.18 mm and 0.15 mm versus 0.15 mm). The gingival thickness measurement showed a high level of agreement between the predicted sparse array images and the ground truth images, as indicated with a bias of -0.01 mm and 0.02 mm for the 64- and 16-channel predicted images, respectively, and a Pearson’s r = 0.99 (p < 0.0001) for both. The gingival thickness bias measured by deep learning assisted sparse array imaging and clinical probing needle was found to be <0.05 mm. Additionally, the deep learning model showed capability of generalization. To conclude, the deep learning assisted sparse array can reconstruct high-resolution ultrasound image using only 16 channels of 128 channels. The deep learning model performed generalization capability for the 64-channel array, while the 16-channel array generalization would require further optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木棉完成签到,获得积分10
1秒前
2秒前
4秒前
6秒前
6秒前
Youtenter发布了新的文献求助10
6秒前
脑洞疼应助偑厸采纳,获得10
7秒前
7秒前
zyw发布了新的文献求助10
7秒前
一昂完成签到,获得积分10
8秒前
Orange应助任军向采纳,获得10
8秒前
8秒前
杨怀托发布了新的文献求助10
8秒前
NexusExplorer应助寒冰寒冰采纳,获得10
10秒前
10秒前
yidingshangan发布了新的文献求助10
11秒前
苏子轩完成签到 ,获得积分10
11秒前
wen发布了新的文献求助10
12秒前
12秒前
13秒前
上官若男应助glq采纳,获得10
13秒前
pepsi发布了新的文献求助10
14秒前
冷静的烧鹅完成签到,获得积分10
16秒前
充电宝应助clearlove采纳,获得10
17秒前
西内!卡Q因完成签到,获得积分10
17秒前
稳重的可仁完成签到,获得积分10
18秒前
热情的板栗完成签到,获得积分10
18秒前
677完成签到,获得积分20
18秒前
19秒前
可爱的函函应助zyw采纳,获得10
19秒前
科研通AI5应助害羞的慕晴采纳,获得10
21秒前
大模型应助秀丽灵珊采纳,获得10
21秒前
22秒前
Lucas应助chj787采纳,获得10
22秒前
七七应助wsh123采纳,获得10
23秒前
我是老大应助wsh123采纳,获得10
23秒前
23秒前
23秒前
24秒前
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
中国化工新材料产业发展报告(2024年) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3762487
求助须知:如何正确求助?哪些是违规求助? 3306276
关于积分的说明 10137847
捐赠科研通 3020556
什么是DOI,文献DOI怎么找? 1658939
邀请新用户注册赠送积分活动 792174
科研通“疑难数据库(出版商)”最低求助积分说明 754881