Assessing Urban Resilience to Flooding at County Level Using Multi-Modal Geospatial Data

大洪水 地理空间分析 洪水(心理学) 地理 自然灾害 自然灾害 弹性(材料科学) 环境资源管理 环境科学 地图学 气象学 心理学 热力学 物理 考古 心理治疗师
作者
Tianyu Zheng,Feng Wu,Chao Wang,Lizhen Lu
标识
DOI:10.1109/agro-geoinformatics59224.2023.10233271
摘要

Urban resilience refers to the capacity of an urban system to adapt and respond to changes, including the ability to better cope with future disaster risks. With the intensifying impact of global climate change, cities are becoming more vulnerable to natural disasters. It is crucial for cities to effectively resist and maintain sustainable economic and social development in the face of these disasters. This paper, taking the “2021.07.20 Henan rainstorm” flood disaster in the Weihe river basin as a study case, applying Sentinel-1 (S1) synthetic aperture radar (SAR) images and other multi-modal geospatial data, aims to assess county-scale urban resilience against flooding. First, the random forest classifier was adopted to extract water bodies at periods of pre-flood, during-flood and post-flood from the preprocessed S1 data. Second, the flood recovery rate (FRR) was chosen for representing urban flood resilience, and was calculated at county-level based on the water bodies of the three periods. Third, data of the 12 factors of social, economic, community and environment dimensions were collected and transformed, and were used to explore and evaluate the main impacting factors on county-level FRRs with the aid of Pearson correlation analysis and principal component analysis (PCA). The results show that: 1) Districts in the southwest have higher recovery levels, while districts in the east have lower recovery levels. 2) The four factors of points of interest (POI) all have significant positive effects on FRR, while topography and slope have considerable negative impacts on FRR. 3) The distribution of FRR and the weights of factors’ influence on FRR can be combined for developing relevant policies for enhancing urban flood resilience.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助wxy采纳,获得10
刚刚
刚刚
3秒前
4秒前
4秒前
Jasper应助整齐便当采纳,获得10
5秒前
愉快的皮卡丘完成签到 ,获得积分10
6秒前
yyy发布了新的文献求助10
8秒前
8秒前
暖部发布了新的文献求助10
8秒前
wzppp发布了新的文献求助10
8秒前
蟹黄丸子发布了新的文献求助10
8秒前
10秒前
微笑立轩完成签到,获得积分10
12秒前
12秒前
鼠大帅发布了新的文献求助10
13秒前
20秒前
超级瑶瑶发布了新的文献求助10
26秒前
林夕完成签到,获得积分10
32秒前
orixero应助萨尔莫斯采纳,获得10
37秒前
呜呜发布了新的文献求助10
38秒前
38秒前
行走的猫完成签到 ,获得积分10
39秒前
40秒前
tracer526发布了新的文献求助10
42秒前
优雅的女神完成签到,获得积分10
43秒前
ikutovaya完成签到,获得积分10
44秒前
理躺丁真完成签到,获得积分10
45秒前
47秒前
SJD完成签到,获得积分0
48秒前
呜呜完成签到,获得积分10
48秒前
领导范儿应助超级瑶瑶采纳,获得10
49秒前
萨尔莫斯发布了新的文献求助10
50秒前
科研通AI6应助蟹黄丸子采纳,获得30
51秒前
可靠小懒虫完成签到,获得积分10
52秒前
今后应助善良的广缘采纳,获得10
52秒前
欢喜的早晨完成签到,获得积分10
56秒前
英俊的铭应助tracer526采纳,获得10
57秒前
彭于晏应助科研通管家采纳,获得10
58秒前
科研通AI6应助科研通管家采纳,获得10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645567
关于积分的说明 14675591
捐赠科研通 4586746
什么是DOI,文献DOI怎么找? 2516526
邀请新用户注册赠送积分活动 1490130
关于科研通互助平台的介绍 1460963