Assessing Urban Resilience to Flooding at County Level Using Multi-Modal Geospatial Data

大洪水 地理空间分析 洪水(心理学) 地理 自然灾害 自然灾害 弹性(材料科学) 环境资源管理 环境科学 地图学 气象学 心理学 物理 考古 心理治疗师 热力学
作者
Tianyu Zheng,Feng Wu,Chao Wang,Lizhen Lu
标识
DOI:10.1109/agro-geoinformatics59224.2023.10233271
摘要

Urban resilience refers to the capacity of an urban system to adapt and respond to changes, including the ability to better cope with future disaster risks. With the intensifying impact of global climate change, cities are becoming more vulnerable to natural disasters. It is crucial for cities to effectively resist and maintain sustainable economic and social development in the face of these disasters. This paper, taking the “2021.07.20 Henan rainstorm” flood disaster in the Weihe river basin as a study case, applying Sentinel-1 (S1) synthetic aperture radar (SAR) images and other multi-modal geospatial data, aims to assess county-scale urban resilience against flooding. First, the random forest classifier was adopted to extract water bodies at periods of pre-flood, during-flood and post-flood from the preprocessed S1 data. Second, the flood recovery rate (FRR) was chosen for representing urban flood resilience, and was calculated at county-level based on the water bodies of the three periods. Third, data of the 12 factors of social, economic, community and environment dimensions were collected and transformed, and were used to explore and evaluate the main impacting factors on county-level FRRs with the aid of Pearson correlation analysis and principal component analysis (PCA). The results show that: 1) Districts in the southwest have higher recovery levels, while districts in the east have lower recovery levels. 2) The four factors of points of interest (POI) all have significant positive effects on FRR, while topography and slope have considerable negative impacts on FRR. 3) The distribution of FRR and the weights of factors’ influence on FRR can be combined for developing relevant policies for enhancing urban flood resilience.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助chen采纳,获得30
刚刚
1秒前
1秒前
JamesPei应助jackbauer采纳,获得10
1秒前
1秒前
ferritin完成签到 ,获得积分10
1秒前
Holly发布了新的文献求助10
2秒前
3秒前
江夏发布了新的文献求助20
3秒前
3秒前
高高的从波完成签到,获得积分10
4秒前
lishiwei完成签到 ,获得积分10
5秒前
wsx关闭了wsx文献求助
5秒前
Bowingyang应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
FanFan应助科研通管家采纳,获得10
5秒前
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
6秒前
Bowingyang应助科研通管家采纳,获得10
6秒前
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
家夜雪发布了新的文献求助10
6秒前
孙大包发布了新的文献求助10
6秒前
Z_BOY完成签到 ,获得积分10
7秒前
搜集达人应助骆風采纳,获得10
7秒前
小琦发布了新的文献求助10
7秒前
8秒前
积极的千琴完成签到,获得积分10
8秒前
派大星的海洋裤完成签到,获得积分10
8秒前
10秒前
jie完成签到,获得积分10
10秒前
优秀的学姐完成签到,获得积分20
10秒前
Ashuno完成签到,获得积分20
12秒前
孙大包完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604157
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857229
捐赠科研通 4696839
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851