Assessing Urban Resilience to Flooding at County Level Using Multi-Modal Geospatial Data

大洪水 地理空间分析 洪水(心理学) 地理 自然灾害 自然灾害 弹性(材料科学) 环境资源管理 环境科学 地图学 气象学 心理学 物理 考古 心理治疗师 热力学
作者
Tianyu Zheng,Feng Wu,Chao Wang,Lizhen Lu
标识
DOI:10.1109/agro-geoinformatics59224.2023.10233271
摘要

Urban resilience refers to the capacity of an urban system to adapt and respond to changes, including the ability to better cope with future disaster risks. With the intensifying impact of global climate change, cities are becoming more vulnerable to natural disasters. It is crucial for cities to effectively resist and maintain sustainable economic and social development in the face of these disasters. This paper, taking the “2021.07.20 Henan rainstorm” flood disaster in the Weihe river basin as a study case, applying Sentinel-1 (S1) synthetic aperture radar (SAR) images and other multi-modal geospatial data, aims to assess county-scale urban resilience against flooding. First, the random forest classifier was adopted to extract water bodies at periods of pre-flood, during-flood and post-flood from the preprocessed S1 data. Second, the flood recovery rate (FRR) was chosen for representing urban flood resilience, and was calculated at county-level based on the water bodies of the three periods. Third, data of the 12 factors of social, economic, community and environment dimensions were collected and transformed, and were used to explore and evaluate the main impacting factors on county-level FRRs with the aid of Pearson correlation analysis and principal component analysis (PCA). The results show that: 1) Districts in the southwest have higher recovery levels, while districts in the east have lower recovery levels. 2) The four factors of points of interest (POI) all have significant positive effects on FRR, while topography and slope have considerable negative impacts on FRR. 3) The distribution of FRR and the weights of factors’ influence on FRR can be combined for developing relevant policies for enhancing urban flood resilience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kx发布了新的文献求助10
刚刚
几木发布了新的文献求助10
刚刚
刚刚
小小莫发布了新的文献求助20
刚刚
华仔应助gzh采纳,获得10
1秒前
自觉水绿发布了新的文献求助10
1秒前
申左一发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
tigerandcar发布了新的文献求助10
2秒前
木子完成签到,获得积分10
2秒前
上官若男应助调皮的安波采纳,获得10
2秒前
落寞妙松完成签到,获得积分10
2秒前
2秒前
王忘汪完成签到 ,获得积分10
2秒前
3秒前
ding应助来一起做朋友吧采纳,获得10
3秒前
3秒前
梓榆发布了新的文献求助10
4秒前
4秒前
小文子完成签到,获得积分10
5秒前
5秒前
5秒前
张帆远航发布了新的文献求助10
5秒前
6秒前
飞飞发布了新的文献求助10
6秒前
6秒前
三金完成签到,获得积分10
6秒前
充电宝应助朱建强采纳,获得10
7秒前
7秒前
7秒前
wanci应助123466采纳,获得10
7秒前
我最棒完成签到,获得积分20
7秒前
Linyi发布了新的文献求助10
7秒前
Akim应助自觉水绿采纳,获得10
7秒前
yyy完成签到,获得积分10
7秒前
8秒前
8秒前
Gao发布了新的文献求助10
8秒前
momomo完成签到 ,获得积分10
8秒前
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559