Assessing Urban Resilience to Flooding at County Level Using Multi-Modal Geospatial Data

大洪水 地理空间分析 洪水(心理学) 地理 自然灾害 自然灾害 弹性(材料科学) 环境资源管理 环境科学 地图学 气象学 心理学 物理 考古 心理治疗师 热力学
作者
Tianyu Zheng,Feng Wu,Chao Wang,Lizhen Lu
标识
DOI:10.1109/agro-geoinformatics59224.2023.10233271
摘要

Urban resilience refers to the capacity of an urban system to adapt and respond to changes, including the ability to better cope with future disaster risks. With the intensifying impact of global climate change, cities are becoming more vulnerable to natural disasters. It is crucial for cities to effectively resist and maintain sustainable economic and social development in the face of these disasters. This paper, taking the “2021.07.20 Henan rainstorm” flood disaster in the Weihe river basin as a study case, applying Sentinel-1 (S1) synthetic aperture radar (SAR) images and other multi-modal geospatial data, aims to assess county-scale urban resilience against flooding. First, the random forest classifier was adopted to extract water bodies at periods of pre-flood, during-flood and post-flood from the preprocessed S1 data. Second, the flood recovery rate (FRR) was chosen for representing urban flood resilience, and was calculated at county-level based on the water bodies of the three periods. Third, data of the 12 factors of social, economic, community and environment dimensions were collected and transformed, and were used to explore and evaluate the main impacting factors on county-level FRRs with the aid of Pearson correlation analysis and principal component analysis (PCA). The results show that: 1) Districts in the southwest have higher recovery levels, while districts in the east have lower recovery levels. 2) The four factors of points of interest (POI) all have significant positive effects on FRR, while topography and slope have considerable negative impacts on FRR. 3) The distribution of FRR and the weights of factors’ influence on FRR can be combined for developing relevant policies for enhancing urban flood resilience.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肖耶啵完成签到,获得积分10
刚刚
Y2LSK完成签到,获得积分10
1秒前
2秒前
务实的一斩完成签到 ,获得积分10
3秒前
糖炒栗子完成签到 ,获得积分10
6秒前
magic7发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
Susanx完成签到,获得积分10
7秒前
初小花完成签到,获得积分10
9秒前
不想看文献完成签到,获得积分10
10秒前
xj_yjl完成签到,获得积分10
11秒前
14秒前
15秒前
呆萌初南完成签到 ,获得积分10
15秒前
喜悦蚂蚁完成签到,获得积分10
17秒前
pengyang完成签到 ,获得积分10
18秒前
夜雨诗意完成签到,获得积分10
19秒前
21秒前
思源应助多余采纳,获得10
21秒前
YAN完成签到 ,获得积分10
23秒前
xinL完成签到,获得积分10
23秒前
wujingshuai完成签到,获得积分10
24秒前
月光光完成签到,获得积分10
26秒前
成就若颜完成签到,获得积分10
26秒前
27秒前
典雅浩轩完成签到,获得积分10
27秒前
夏雪儿完成签到,获得积分10
27秒前
n0way完成签到,获得积分10
31秒前
ShawnJohn完成签到,获得积分10
32秒前
Scheduling完成签到 ,获得积分10
33秒前
万能图书馆应助aikeyan采纳,获得10
33秒前
SaSa发布了新的文献求助20
34秒前
孤独丹秋完成签到,获得积分10
34秒前
林夏完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
35秒前
hhhhhha完成签到,获得积分10
35秒前
虚幻的香彤完成签到,获得积分10
35秒前
hitzwd完成签到,获得积分10
36秒前
能干戎完成签到,获得积分10
36秒前
赘婿应助平平宁采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645160
求助须知:如何正确求助?哪些是违规求助? 4767911
关于积分的说明 15026597
捐赠科研通 4803591
什么是DOI,文献DOI怎么找? 2568393
邀请新用户注册赠送积分活动 1525717
关于科研通互助平台的介绍 1485369