Assessing Urban Resilience to Flooding at County Level Using Multi-Modal Geospatial Data

大洪水 地理空间分析 洪水(心理学) 地理 自然灾害 自然灾害 弹性(材料科学) 环境资源管理 环境科学 地图学 气象学 心理学 物理 考古 心理治疗师 热力学
作者
Tianyu Zheng,Feng Wu,Chao Wang,Lizhen Lu
标识
DOI:10.1109/agro-geoinformatics59224.2023.10233271
摘要

Urban resilience refers to the capacity of an urban system to adapt and respond to changes, including the ability to better cope with future disaster risks. With the intensifying impact of global climate change, cities are becoming more vulnerable to natural disasters. It is crucial for cities to effectively resist and maintain sustainable economic and social development in the face of these disasters. This paper, taking the “2021.07.20 Henan rainstorm” flood disaster in the Weihe river basin as a study case, applying Sentinel-1 (S1) synthetic aperture radar (SAR) images and other multi-modal geospatial data, aims to assess county-scale urban resilience against flooding. First, the random forest classifier was adopted to extract water bodies at periods of pre-flood, during-flood and post-flood from the preprocessed S1 data. Second, the flood recovery rate (FRR) was chosen for representing urban flood resilience, and was calculated at county-level based on the water bodies of the three periods. Third, data of the 12 factors of social, economic, community and environment dimensions were collected and transformed, and were used to explore and evaluate the main impacting factors on county-level FRRs with the aid of Pearson correlation analysis and principal component analysis (PCA). The results show that: 1) Districts in the southwest have higher recovery levels, while districts in the east have lower recovery levels. 2) The four factors of points of interest (POI) all have significant positive effects on FRR, while topography and slope have considerable negative impacts on FRR. 3) The distribution of FRR and the weights of factors’ influence on FRR can be combined for developing relevant policies for enhancing urban flood resilience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ricardo完成签到 ,获得积分10
3秒前
希望天下0贩的0应助devil采纳,获得10
3秒前
3秒前
Owen应助ubiqutin采纳,获得10
4秒前
油焖青椒发布了新的文献求助10
6秒前
李健应助TT采纳,获得10
6秒前
黎金鑫完成签到,获得积分10
8秒前
8秒前
yuchao_0110完成签到,获得积分10
9秒前
奶盐牙牙乐完成签到 ,获得积分10
10秒前
Santasy发布了新的文献求助10
10秒前
11秒前
呆呆发布了新的文献求助20
11秒前
舒适的平蓝完成签到 ,获得积分10
12秒前
科研通AI5应助Upupcc采纳,获得10
13秒前
13秒前
14秒前
Maestro_S应助英语教育在读采纳,获得10
14秒前
呼呼发布了新的文献求助10
15秒前
ubiqutin发布了新的文献求助10
16秒前
毛毛完成签到,获得积分10
16秒前
qiaobaqiao完成签到 ,获得积分10
16秒前
19秒前
Auto完成签到 ,获得积分10
20秒前
20秒前
悠悠小土豆完成签到,获得积分10
21秒前
22秒前
22秒前
susu发布了新的文献求助10
22秒前
周小浪完成签到,获得积分10
22秒前
徐徐发布了新的文献求助10
24秒前
Santasy完成签到,获得积分10
25秒前
科研通AI5应助诸笑白采纳,获得10
26秒前
沙青烟完成签到,获得积分10
26秒前
26秒前
qiqi发布了新的文献求助20
27秒前
27秒前
明理晓霜发布了新的文献求助10
27秒前
凝子老师发布了新的文献求助10
27秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849