A Memristive Fully Connect Neural Network and Application of Medical Image Encryption Based on Central Diffusion Algorithm

记忆电阻器 加密 计算机科学 人工神经网络 混乱的 排列(音乐) 算法 混乱的边缘 非线性系统 理论计算机科学 人工智能 计算机网络 电子工程 工程类 物理 量子力学 声学
作者
Junwei Sun,Chuang‐Chuang Li,Zicheng Wang,Yanfeng Wang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 3778-3788 被引量:38
标识
DOI:10.1109/tii.2023.3312405
摘要

With the continuous development of computers, communication technology, and regional medical collaboration services, the security and confidentiality of information are becoming more and more important. In order to prevent the illegal leakage of sensitive patient information, it is of great significance to study medical image encryption. In this article, a flux-controlled hyperbolic memristor model with locally active characteristics is proposed, which has rich nonlinear characteristics. The memristor parameters affect the local activity of the memristor, which is explained by mathematical analysis. Based on the traditional hopfield neural network (HNN), a memristive fully connect neural network (MFNN) containing four neurons is constructed with more complex coupling relationships between individual neurons. The memristor can be used to characterize the effect of external electromagnetic radiation on neurons. The complex dynamical behaviors of MFNN are found by numerical simulations. An equivalent circuit for the neural network is constructed to verify the accuracy of the numerical simulation. In addition, a medical image encryption scheme based on MFNN is proposed. The encryption scheme performs a bit-level permutation of the original image using a chaotic sequence randomly generated by the chaotic system. Fibonacci $Q$ -matrix and central diffusion algorithm are used to diffuse the permutation image. Through numerical analysis, the maximum entropy of this encryption algorithm reaches 7.99, and the correlation is close to zero, which proves the resistance of the algorithm to statistical attacks. The algorithm takes only 3.9 s to encrypt an 8-bit medical image of 320 × 320 size on Windows 10 operating system. Experimental results show that the proposed encryption scheme is very secure and has good applications in medical image encryption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
蛋白完成签到,获得积分10
1秒前
大个应助WWW采纳,获得10
2秒前
任梓宁发布了新的文献求助10
2秒前
ttjgm发布了新的文献求助10
2秒前
Orange应助Lin_采纳,获得10
2秒前
努力搞科研完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
77完成签到,获得积分10
6秒前
TY完成签到,获得积分20
6秒前
斯文谷秋发布了新的文献求助30
7秒前
7秒前
cloud发布了新的文献求助10
7秒前
笑点低的又夏完成签到,获得积分10
8秒前
闪闪语风发布了新的文献求助10
8秒前
8秒前
peerless发布了新的文献求助10
9秒前
充电宝应助newgeno2003采纳,获得10
9秒前
内向秀发发布了新的文献求助10
10秒前
77发布了新的文献求助10
10秒前
10秒前
L~关闭了L~文献求助
11秒前
ccyrichard发布了新的文献求助10
11秒前
11秒前
张欣欣完成签到,获得积分10
12秒前
13秒前
木象爱火锅完成签到,获得积分10
13秒前
14秒前
V1encent发布了新的文献求助10
15秒前
sea发布了新的文献求助10
15秒前
zjt完成签到,获得积分10
16秒前
WSSY发布了新的文献求助10
17秒前
贺知什么书完成签到,获得积分10
17秒前
沐风发布了新的文献求助10
18秒前
斯文谷秋发布了新的文献求助30
19秒前
newgeno2003完成签到,获得积分10
19秒前
yr888发布了新的文献求助20
19秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236471
求助须知:如何正确求助?哪些是违规求助? 2882158
关于积分的说明 8225468
捐赠科研通 2550188
什么是DOI,文献DOI怎么找? 1379074
科研通“疑难数据库(出版商)”最低求助积分说明 648510
邀请新用户注册赠送积分活动 624079