A Memristive Fully Connect Neural Network and Application of Medical Image Encryption Based on Central Diffusion Algorithm

记忆电阻器 加密 计算机科学 人工神经网络 混乱的 排列(音乐) 算法 混乱的边缘 非线性系统 理论计算机科学 人工智能 计算机网络 电子工程 工程类 物理 量子力学 声学
作者
Junwei Sun,Chuang‐Chuang Li,Zicheng Wang,Yanfeng Wang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 3778-3788 被引量:123
标识
DOI:10.1109/tii.2023.3312405
摘要

With the continuous development of computers, communication technology, and regional medical collaboration services, the security and confidentiality of information are becoming more and more important. In order to prevent the illegal leakage of sensitive patient information, it is of great significance to study medical image encryption. In this article, a flux-controlled hyperbolic memristor model with locally active characteristics is proposed, which has rich nonlinear characteristics. The memristor parameters affect the local activity of the memristor, which is explained by mathematical analysis. Based on the traditional hopfield neural network (HNN), a memristive fully connect neural network (MFNN) containing four neurons is constructed with more complex coupling relationships between individual neurons. The memristor can be used to characterize the effect of external electromagnetic radiation on neurons. The complex dynamical behaviors of MFNN are found by numerical simulations. An equivalent circuit for the neural network is constructed to verify the accuracy of the numerical simulation. In addition, a medical image encryption scheme based on MFNN is proposed. The encryption scheme performs a bit-level permutation of the original image using a chaotic sequence randomly generated by the chaotic system. Fibonacci $Q$ -matrix and central diffusion algorithm are used to diffuse the permutation image. Through numerical analysis, the maximum entropy of this encryption algorithm reaches 7.99, and the correlation is close to zero, which proves the resistance of the algorithm to statistical attacks. The algorithm takes only 3.9 s to encrypt an 8-bit medical image of 320 × 320 size on Windows 10 operating system. Experimental results show that the proposed encryption scheme is very secure and has good applications in medical image encryption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰沁沁心完成签到,获得积分10
刚刚
刚刚
2秒前
2秒前
夏夏发布了新的文献求助10
2秒前
3秒前
daodao发布了新的文献求助10
3秒前
穆柏杨完成签到,获得积分10
4秒前
内向凌波完成签到 ,获得积分10
4秒前
直率雪糕完成签到 ,获得积分10
5秒前
5秒前
湘文完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
您的帮助将会点亮世界完成签到,获得积分10
7秒前
7秒前
党meng发布了新的文献求助10
7秒前
7秒前
叶子发布了新的文献求助10
7秒前
浮游应助丙队长采纳,获得10
7秒前
8秒前
端庄的夏寒完成签到,获得积分10
11秒前
11秒前
12秒前
71完成签到,获得积分10
12秒前
减减完成签到,获得积分10
13秒前
小李发布了新的文献求助10
13秒前
小马甲应助道中道采纳,获得10
13秒前
党meng完成签到,获得积分20
14秒前
kitten完成签到,获得积分10
14秒前
打打应助高高很厉害采纳,获得10
14秒前
15秒前
16秒前
南宫迎松发布了新的文献求助10
16秒前
Wy完成签到,获得积分10
16秒前
丘比特应助黑马王子采纳,获得10
18秒前
18秒前
夏夏完成签到,获得积分10
19秒前
专一的饼干完成签到,获得积分10
20秒前
风衣拖地发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532391
求助须知:如何正确求助?哪些是违规求助? 4621091
关于积分的说明 14576955
捐赠科研通 4560970
什么是DOI,文献DOI怎么找? 2499064
邀请新用户注册赠送积分活动 1479026
关于科研通互助平台的介绍 1450284