A Memristive Fully Connect Neural Network and Application of Medical Image Encryption Based on Central Diffusion Algorithm

记忆电阻器 加密 计算机科学 人工神经网络 混乱的 排列(音乐) 算法 混乱的边缘 非线性系统 理论计算机科学 人工智能 计算机网络 电子工程 工程类 物理 量子力学 声学
作者
Junwei Sun,Chuang‐Chuang Li,Zicheng Wang,Yanfeng Wang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 3778-3788 被引量:47
标识
DOI:10.1109/tii.2023.3312405
摘要

With the continuous development of computers, communication technology, and regional medical collaboration services, the security and confidentiality of information are becoming more and more important. In order to prevent the illegal leakage of sensitive patient information, it is of great significance to study medical image encryption. In this article, a flux-controlled hyperbolic memristor model with locally active characteristics is proposed, which has rich nonlinear characteristics. The memristor parameters affect the local activity of the memristor, which is explained by mathematical analysis. Based on the traditional hopfield neural network (HNN), a memristive fully connect neural network (MFNN) containing four neurons is constructed with more complex coupling relationships between individual neurons. The memristor can be used to characterize the effect of external electromagnetic radiation on neurons. The complex dynamical behaviors of MFNN are found by numerical simulations. An equivalent circuit for the neural network is constructed to verify the accuracy of the numerical simulation. In addition, a medical image encryption scheme based on MFNN is proposed. The encryption scheme performs a bit-level permutation of the original image using a chaotic sequence randomly generated by the chaotic system. Fibonacci $Q$ -matrix and central diffusion algorithm are used to diffuse the permutation image. Through numerical analysis, the maximum entropy of this encryption algorithm reaches 7.99, and the correlation is close to zero, which proves the resistance of the algorithm to statistical attacks. The algorithm takes only 3.9 s to encrypt an 8-bit medical image of 320 × 320 size on Windows 10 operating system. Experimental results show that the proposed encryption scheme is very secure and has good applications in medical image encryption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SS发布了新的文献求助10
1秒前
顺顺发布了新的文献求助10
2秒前
2秒前
2秒前
www发布了新的文献求助10
2秒前
3秒前
3秒前
李繁蕊发布了新的文献求助10
4秒前
暴躁的嘉懿完成签到,获得积分10
4秒前
LZH发布了新的文献求助20
4秒前
领导范儿应助rosexu采纳,获得10
5秒前
华生完成签到,获得积分10
6秒前
6秒前
Miracle关注了科研通微信公众号
6秒前
通~发布了新的文献求助10
7秒前
7秒前
Apple完成签到,获得积分10
7秒前
sunzhiyu233发布了新的文献求助10
8秒前
医学僧发布了新的文献求助30
8秒前
Sheila完成签到 ,获得积分10
8秒前
sweetbearm应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
NN应助科研通管家采纳,获得10
8秒前
9秒前
英姑应助科研通管家采纳,获得10
9秒前
36456657应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
prosperp应助科研通管家采纳,获得20
9秒前
打打应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
10秒前
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
执着夏岚完成签到 ,获得积分10
10秒前
CipherSage应助苏州小北采纳,获得10
10秒前
www完成签到,获得积分20
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808