二元曲线
计算机科学
人工智能
情绪分析
词(群论)
自然语言处理
库存(枪支)
股票价格
背景(考古学)
财务
机器学习
语言学
经济
历史
系列(地层学)
三元曲线
哲学
古生物学
考古
生物
作者
Diego Garcı́a,Xiaowen Hu,Maximilian Rohrer
标识
DOI:10.1016/j.jfineco.2022.11.006
摘要
Our paper relies on stock price reactions to colour words, in order to provide new dictionaries of positive and negative words in a finance context. We extend the machine learning algorithm of Taddy (2013), adding a cross-validation layer to avoid over-fitting. In head-to-head comparisons, our dictionaries outperform the standard bag-of-words approach (Loughran and McDonald, 2011) when predicting stock price movements out-of-sample. By comparing their composition, word-by-word, our method refines and expands the sentiment dictionaries in the literature. The breadth of our dictionaries and their ability to disambiguate words using bigrams both help to colour finance discourse better.
科研通智能强力驱动
Strongly Powered by AbleSci AI