Development of a Novel Inflammatory Index to Predict Coronary Artery Disease Severity in Patients With Acute Coronary Syndrome

医学 内科学 冠状动脉疾病 接收机工作特性 心脏病学 急性冠脉综合征 中性粒细胞与淋巴细胞比率 曲线下面积 全身炎症 淋巴细胞 炎症 心肌梗塞
作者
Sridhar Mangalesh,Sharmila Dudani,Nalin Kumar Mahesh
出处
期刊:Angiology [SAGE]
卷期号:75 (3): 231-239 被引量:19
标识
DOI:10.1177/00033197231151564
摘要

The systemic immune-inflammation index (SII) and systemic inflammation response index (SIRI) have previously demonstrated predictive value in coronary artery disease (CAD). We developed on an expanded, novel systemic immune-inflammation response index (SIIRI), calculated as peripheral neutrophil × monocyte × platelet ÷ lymphocyte count. We assessed 240 patients with an acute coronary syndrome that subsequently underwent percutaneous coronary intervention. CAD severity was measured using the SYNTAX score. Laboratory measurements, including cell counts, were obtained on admission. On multivariate analysis, the SIIRI was an independent predictor of severe CAD with an adjusted odds ratio (OR) of 1.666 [1.376-2.017] per 10 5 -unit increase. The SIIRI had the highest area under the receiver operator curve of .771 [.709-.833] compared to the SII, SIRI neutrophil-lymphocyte ratio, monocyte-lymphocyte ratio, and platelet-lymphocyte ratio. The optimal cut-off for SIIRI was 4.3 × 10 5 , with sensitivity = 69.9% and specificity = 75.8%. Increment in model performance resulting from adding SIIRI versus other inflammatory indices was assessed using discrimination, calibration, and goodness-of-fit measures. When added to a baseline model, the SIIRI resulted in a significant increase in the c-statistic and significant net reclassification index (.808, P < .0001) and integrated discrimination index (.129, P < .0001), and a decrease in Akaike and Bayesian information criteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲤鱼凝云完成签到,获得积分10
刚刚
1秒前
打工人发布了新的文献求助10
1秒前
XU完成签到 ,获得积分10
1秒前
holypeace发布了新的文献求助10
2秒前
fengpu完成签到,获得积分10
4秒前
lalala应助简单采纳,获得10
4秒前
Gauss应助Justlikedoughnut采纳,获得30
7秒前
Sherlock完成签到,获得积分10
8秒前
洪桂淋完成签到,获得积分10
8秒前
lvruon发布了新的文献求助10
9秒前
刘姿麟关注了科研通微信公众号
11秒前
11秒前
11秒前
12秒前
搜集达人应助ytx采纳,获得200
13秒前
13秒前
bigstone发布了新的文献求助10
14秒前
gyy完成签到,获得积分10
14秒前
15秒前
丘比特应助板鸭采纳,获得50
15秒前
甜甜的盼海完成签到,获得积分10
16秒前
无昵称发布了新的文献求助10
16秒前
16秒前
shanage发布了新的文献求助10
16秒前
16秒前
LEE123发布了新的文献求助10
17秒前
17秒前
钟垠州完成签到 ,获得积分10
18秒前
18秒前
18秒前
19秒前
郁金香完成签到,获得积分10
19秒前
乐乐应助Aqua采纳,获得10
20秒前
20秒前
20秒前
21秒前
打打应助古哉采纳,获得10
21秒前
Gail完成签到 ,获得积分10
22秒前
22秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3486950
求助须知:如何正确求助?哪些是违规求助? 3075033
关于积分的说明 9139262
捐赠科研通 2767282
什么是DOI,文献DOI怎么找? 1518530
邀请新用户注册赠送积分活动 703148
科研通“疑难数据库(出版商)”最低求助积分说明 701627