Patent Classification with Intelligent Keyword Extraction

计算机科学 关键词提取 专利可视化 领域(数学) 聚类分析 专利申请 公共领域 情报检索 领域(数学分析) 竞争优势 数据科学 数据挖掘 人工智能 工程类 电气工程 数学分析 哲学 业务 营销 纯数学 数学 神学
作者
Umita Joshi,Mayur Hedaoo,Priyesh Fatnani,Monika Bansal,Vidya N. More
标识
DOI:10.1109/iccubea54992.2022.10010888
摘要

Nowadays, companies invest to promote innovative ideas to have the edge over its competitor. These upcoming ideas are comprehensively defined in patent documents which are readily available in the public domain. So, there is a need to analyze patent documents to achieve a strong market position, get high returns on investment, and identify new business segments. One popular method for analyzing patent documents is manually classifying each technical or scientific document into several predefined technical categories by field experts. However, this manual classification approach is expensive in terms of time, cost and it is error-prone. Also, there is a requirement for extended efforts for handling frequent data updates. In contrast, cheaper and faster operations are enabled by Artificial Intelligence techniques and can relieve the human resources burden. In this paper, we suggested an intelligent keyword extraction technique to help business professionals easily identify technologies and labels of sub-technologies involved in the patent document. In this research, we considered 35,477 patent documents from the commercial patent database. We implemented an intelligent keyword extraction technique to obtain meaningful keyword sets associated with technical information from patent documents. Later on, we trained Google's BERT (i.e., Bidirectional Encoder Representations from Transformers) keyword extraction model on textual input (title, abstract, and claims) and keyword sets from patent documents for predicting patent technology and sub-technology labels. Afterward, the performance of the proposed method is compared with K-means clustering+ TF- IDF and LDA-based topic modeling. The experimental outcomes illustrate that our proposed algorithm offers a reasonable means to classify patent documents by extracting dominant keywords from patent texts. With the proposed approach, we achieved 97.18% accuracy for patent technology identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wrryuu完成签到 ,获得积分10
刚刚
ding应助纪梵希采纳,获得10
2秒前
落寞凌波发布了新的文献求助10
2秒前
奋斗的冬云完成签到,获得积分10
3秒前
科研通AI2S应助wu采纳,获得10
3秒前
4秒前
考博圣体完成签到 ,获得积分10
5秒前
天天快乐应助洺全采纳,获得10
5秒前
烟花应助醒醒采纳,获得10
6秒前
7秒前
李爱国应助zzx采纳,获得10
7秒前
8秒前
9秒前
9秒前
9秒前
沉淀完成签到,获得积分20
10秒前
活力的小猫咪完成签到 ,获得积分10
10秒前
JamesPei应助虚心的冷雪采纳,获得10
11秒前
11秒前
11秒前
11秒前
12秒前
帅气的小兔子完成签到 ,获得积分10
13秒前
陈宇发布了新的文献求助10
14秒前
15秒前
大力的飞莲完成签到,获得积分10
15秒前
15秒前
田様应助我爱学习采纳,获得10
15秒前
16秒前
wu发布了新的文献求助10
16秒前
mkl发布了新的文献求助10
17秒前
18秒前
aldehyde完成签到,获得积分0
18秒前
19秒前
19秒前
Anson发布了新的文献求助10
19秒前
好好睡觉没烦恼完成签到,获得积分20
20秒前
21秒前
deathmask完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助150
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954534
求助须知:如何正确求助?哪些是违规求助? 3500649
关于积分的说明 11100400
捐赠科研通 3231158
什么是DOI,文献DOI怎么找? 1786297
邀请新用户注册赠送积分活动 869936
科研通“疑难数据库(出版商)”最低求助积分说明 801719