Patent Classification with Intelligent Keyword Extraction

计算机科学 关键词提取 专利可视化 领域(数学) 聚类分析 专利申请 公共领域 情报检索 领域(数学分析) 竞争优势 数据科学 数据挖掘 人工智能 工程类 电气工程 数学分析 哲学 业务 营销 纯数学 数学 神学
作者
Umita Joshi,Mayur Hedaoo,Priyesh Fatnani,Monika Bansal,Vidya N. More
标识
DOI:10.1109/iccubea54992.2022.10010888
摘要

Nowadays, companies invest to promote innovative ideas to have the edge over its competitor. These upcoming ideas are comprehensively defined in patent documents which are readily available in the public domain. So, there is a need to analyze patent documents to achieve a strong market position, get high returns on investment, and identify new business segments. One popular method for analyzing patent documents is manually classifying each technical or scientific document into several predefined technical categories by field experts. However, this manual classification approach is expensive in terms of time, cost and it is error-prone. Also, there is a requirement for extended efforts for handling frequent data updates. In contrast, cheaper and faster operations are enabled by Artificial Intelligence techniques and can relieve the human resources burden. In this paper, we suggested an intelligent keyword extraction technique to help business professionals easily identify technologies and labels of sub-technologies involved in the patent document. In this research, we considered 35,477 patent documents from the commercial patent database. We implemented an intelligent keyword extraction technique to obtain meaningful keyword sets associated with technical information from patent documents. Later on, we trained Google's BERT (i.e., Bidirectional Encoder Representations from Transformers) keyword extraction model on textual input (title, abstract, and claims) and keyword sets from patent documents for predicting patent technology and sub-technology labels. Afterward, the performance of the proposed method is compared with K-means clustering+ TF- IDF and LDA-based topic modeling. The experimental outcomes illustrate that our proposed algorithm offers a reasonable means to classify patent documents by extracting dominant keywords from patent texts. With the proposed approach, we achieved 97.18% accuracy for patent technology identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助多云采纳,获得10
刚刚
1秒前
1秒前
懵懂的采梦应助laotianshu采纳,获得10
2秒前
HMM完成签到,获得积分10
2秒前
正太低音炮完成签到,获得积分10
2秒前
2秒前
花源发布了新的文献求助10
3秒前
3秒前
宴之敖者完成签到,获得积分10
3秒前
李哈哈完成签到,获得积分10
3秒前
Ying给诚心巧凡的求助进行了留言
4秒前
4秒前
学渣完成签到,获得积分10
4秒前
秦尔晗发布了新的文献求助10
5秒前
yyc应助LLC采纳,获得10
5秒前
5秒前
田様应助时眠采纳,获得10
6秒前
6秒前
6秒前
钮不二发布了新的文献求助10
7秒前
脑洞疼应助数学自动化采纳,获得30
7秒前
7秒前
蛙蛙完成签到,获得积分10
7秒前
windli发布了新的文献求助10
7秒前
ccob完成签到,获得积分10
8秒前
9秒前
9秒前
饕餮肉丝完成签到,获得积分10
9秒前
过期牛奶坏肚子完成签到,获得积分10
10秒前
tangli完成签到 ,获得积分10
10秒前
22完成签到 ,获得积分10
10秒前
cis2014发布了新的文献求助10
10秒前
上官若男应助感动的念双采纳,获得10
10秒前
move发布了新的文献求助10
10秒前
落樱幻梦染星尘完成签到,获得积分10
11秒前
椰椰雪饼完成签到,获得积分10
11秒前
11秒前
nana完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396060
求助须知:如何正确求助?哪些是违规求助? 4516445
关于积分的说明 14059685
捐赠科研通 4428359
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424236
关于科研通互助平台的介绍 1403472