已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic scheduling for flexible job shop using a deep reinforcement learning approach

拖延 强化学习 计算机科学 动态优先级调度 调度(生产过程) 马尔可夫决策过程 数学优化 动作选择 作业车间调度 人工智能 马尔可夫过程 数学 地铁列车时刻表 生物 统计 感知 操作系统 神经科学
作者
Yong Gui,Dunbing Tang,Haihua Zhu,Yi Zhang,Zequn Zhang
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:180: 109255-109255 被引量:132
标识
DOI:10.1016/j.cie.2023.109255
摘要

Due to the influence of dynamic changes in the manufacturing environment, a single dispatching rule (SDR) cannot consistently attain better results than other rules for dynamic scheduling problems. Dynamic selection of the most appropriate rule from several SDRs based on the Deep Q-Network (DQN) offers better scheduling performance than using an individual SDR. However, the discreteness of action space caused by the DQN and the simplicity of the action as an SDR limit the selection range and restrict performance improvement. Thus, in this paper, we propose a scheduling method based on deep reinforcement learning for the dynamic flexible job-shop scheduling problem (DFJSP), aiming to minimize the mean tardiness. Firstly, a Markov decision process with composite scheduling action is provided to elaborate the flexible job-shop dynamic scheduling process and transform the DFJSP into an RL task. Subsequently, a composite scheduling action aggregated by SDRs and continuous weight variables is designed to provide a continuous rule space and SDR weight selection. Moreover, a reward function related to mean tardiness performance criteria is designed such that maximizing the cumulative reward is equivalent to minimizing the mean tardiness. Finally, a policy network with states as inputs and weights as outputs is constructed to generate the scheduling decision at each decision point. Also, the deep deterministic policy gradient (DDPG) algorithm is used to train the policy network to select the most appropriate weights at each decision point, thereby aggregating the SDRs into a better rule. Results from numerical experiments reveal that the proposed scheduling method achieves significantly better scheduling results than an SDR and the DQN-based method in dynamically changeable manufacturing environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
褚幻香发布了新的文献求助10
刚刚
范范完成签到,获得积分20
1秒前
4秒前
Yusra完成签到 ,获得积分10
5秒前
不懈奋进应助LO7pM2采纳,获得30
6秒前
7秒前
蛋挞完成签到 ,获得积分10
7秒前
向阳完成签到,获得积分10
7秒前
455完成签到,获得积分10
8秒前
向阳发布了新的文献求助10
11秒前
Akim应助柚子采纳,获得10
12秒前
大模型应助PAPA采纳,获得10
13秒前
14秒前
Hello应助科研通管家采纳,获得10
15秒前
Hilda007应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
YifanWang应助科研通管家采纳,获得10
15秒前
Hilda007应助科研通管家采纳,获得10
15秒前
CCCheny应助科研通管家采纳,获得10
15秒前
YifanWang应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
16秒前
CCCheny应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
16秒前
隐形曼青应助科研通管家采纳,获得100
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得100
16秒前
Hello应助科研通管家采纳,获得10
16秒前
无极微光应助科研通管家采纳,获得20
16秒前
无极微光应助科研通管家采纳,获得20
16秒前
SciGPT应助科研通管家采纳,获得30
16秒前
SciGPT应助科研通管家采纳,获得30
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938