Dynamic scheduling for flexible job shop using a deep reinforcement learning approach

拖延 强化学习 计算机科学 动态优先级调度 调度(生产过程) 马尔可夫决策过程 数学优化 动作选择 作业车间调度 人工智能 马尔可夫过程 数学 地铁列车时刻表 操作系统 统计 神经科学 感知 生物
作者
Yong Gui,Dunbing Tang,Haihua Zhu,Yi Zhang,Zequn Zhang
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:180: 109255-109255 被引量:35
标识
DOI:10.1016/j.cie.2023.109255
摘要

Due to the influence of dynamic changes in the manufacturing environment, a single dispatching rule (SDR) cannot consistently attain better results than other rules for dynamic scheduling problems. Dynamic selection of the most appropriate rule from several SDRs based on the Deep Q-Network (DQN) offers better scheduling performance than using an individual SDR. However, the discreteness of action space caused by the DQN and the simplicity of the action as an SDR limit the selection range and restrict performance improvement. Thus, in this paper, we propose a scheduling method based on deep reinforcement learning for the dynamic flexible job-shop scheduling problem (DFJSP), aiming to minimize the mean tardiness. Firstly, a Markov decision process with composite scheduling action is provided to elaborate the flexible job-shop dynamic scheduling process and transform the DFJSP into an RL task. Subsequently, a composite scheduling action aggregated by SDRs and continuous weight variables is designed to provide a continuous rule space and SDR weight selection. Moreover, a reward function related to mean tardiness performance criteria is designed such that maximizing the cumulative reward is equivalent to minimizing the mean tardiness. Finally, a policy network with states as inputs and weights as outputs is constructed to generate the scheduling decision at each decision point. Also, the deep deterministic policy gradient (DDPG) algorithm is used to train the policy network to select the most appropriate weights at each decision point, thereby aggregating the SDRs into a better rule. Results from numerical experiments reveal that the proposed scheduling method achieves significantly better scheduling results than an SDR and the DQN-based method in dynamically changeable manufacturing environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南北完成签到,获得积分20
1秒前
2秒前
南北发布了新的文献求助10
7秒前
英俊的铭应助HAOKEE采纳,获得10
7秒前
9秒前
9秒前
10秒前
12秒前
5High_0发布了新的文献求助10
12秒前
彭于晏应助徐智秀采纳,获得10
13秒前
15秒前
科研小风发布了新的文献求助30
16秒前
阔达曲奇发布了新的文献求助10
17秒前
秋向秋完成签到,获得积分10
20秒前
大力的镜子完成签到,获得积分10
22秒前
hgf完成签到,获得积分10
25秒前
27秒前
科研小白完成签到 ,获得积分10
27秒前
28秒前
丘比特应助科研小风采纳,获得30
29秒前
hw完成签到 ,获得积分10
31秒前
穆青关注了科研通微信公众号
33秒前
33秒前
plum完成签到 ,获得积分10
36秒前
Damia完成签到,获得积分10
36秒前
不配.应助刚好采纳,获得30
37秒前
38秒前
39秒前
39秒前
小米辣完成签到,获得积分10
39秒前
Li完成签到,获得积分10
40秒前
贤惠的靖易完成签到,获得积分20
41秒前
42秒前
Jasper应助centlay采纳,获得10
42秒前
xiguan发布了新的文献求助10
43秒前
qwa发布了新的文献求助10
43秒前
43秒前
抓到你啦完成签到,获得积分10
44秒前
44秒前
pupu完成签到,获得积分10
45秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141291
求助须知:如何正确求助?哪些是违规求助? 2792288
关于积分的说明 7802124
捐赠科研通 2448479
什么是DOI,文献DOI怎么找? 1302606
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237