Dynamic scheduling for flexible job shop using a deep reinforcement learning approach

拖延 强化学习 计算机科学 动态优先级调度 调度(生产过程) 马尔可夫决策过程 数学优化 动作选择 作业车间调度 人工智能 马尔可夫过程 数学 地铁列车时刻表 生物 统计 感知 操作系统 神经科学
作者
Yong Gui,Dunbing Tang,Haihua Zhu,Yi Zhang,Zequn Zhang
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:180: 109255-109255 被引量:64
标识
DOI:10.1016/j.cie.2023.109255
摘要

Due to the influence of dynamic changes in the manufacturing environment, a single dispatching rule (SDR) cannot consistently attain better results than other rules for dynamic scheduling problems. Dynamic selection of the most appropriate rule from several SDRs based on the Deep Q-Network (DQN) offers better scheduling performance than using an individual SDR. However, the discreteness of action space caused by the DQN and the simplicity of the action as an SDR limit the selection range and restrict performance improvement. Thus, in this paper, we propose a scheduling method based on deep reinforcement learning for the dynamic flexible job-shop scheduling problem (DFJSP), aiming to minimize the mean tardiness. Firstly, a Markov decision process with composite scheduling action is provided to elaborate the flexible job-shop dynamic scheduling process and transform the DFJSP into an RL task. Subsequently, a composite scheduling action aggregated by SDRs and continuous weight variables is designed to provide a continuous rule space and SDR weight selection. Moreover, a reward function related to mean tardiness performance criteria is designed such that maximizing the cumulative reward is equivalent to minimizing the mean tardiness. Finally, a policy network with states as inputs and weights as outputs is constructed to generate the scheduling decision at each decision point. Also, the deep deterministic policy gradient (DDPG) algorithm is used to train the policy network to select the most appropriate weights at each decision point, thereby aggregating the SDRs into a better rule. Results from numerical experiments reveal that the proposed scheduling method achieves significantly better scheduling results than an SDR and the DQN-based method in dynamically changeable manufacturing environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sry完成签到,获得积分10
刚刚
徐嘿嘿发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
伶俐的夜南完成签到,获得积分10
4秒前
小蝶发布了新的文献求助10
4秒前
lvshiwen发布了新的文献求助30
4秒前
5秒前
Ann完成签到,获得积分10
6秒前
7秒前
8秒前
ZH发布了新的文献求助10
8秒前
今后应助小蝶采纳,获得10
9秒前
linmo发布了新的文献求助10
9秒前
9秒前
肉丸子发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
可爱的函函应助徐嘿嘿采纳,获得10
13秒前
13秒前
轻松惜筠发布了新的文献求助10
14秒前
14秒前
AJian发布了新的文献求助10
15秒前
cgliuhx发布了新的文献求助10
16秒前
Cxxxx完成签到 ,获得积分10
17秒前
18秒前
19秒前
肉丸子完成签到,获得积分10
19秒前
木木林发布了新的文献求助10
19秒前
20秒前
SYLH应助你怎么睡得着觉采纳,获得10
20秒前
干饭大王应助热心小松鼠采纳,获得10
21秒前
24秒前
24秒前
成就猫咪发布了新的文献求助10
25秒前
lppp完成签到,获得积分10
25秒前
璇璇完成签到 ,获得积分10
25秒前
辽阳太子完成签到,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966822
求助须知:如何正确求助?哪些是违规求助? 3512333
关于积分的说明 11162715
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432