Dynamic scheduling for flexible job shop using a deep reinforcement learning approach

拖延 强化学习 计算机科学 动态优先级调度 调度(生产过程) 马尔可夫决策过程 数学优化 动作选择 作业车间调度 人工智能 马尔可夫过程 数学 地铁列车时刻表 操作系统 统计 神经科学 感知 生物
作者
Yong Gui,Dunbing Tang,Haihua Zhu,Yi Zhang,Zequn Zhang
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:180: 109255-109255 被引量:35
标识
DOI:10.1016/j.cie.2023.109255
摘要

Due to the influence of dynamic changes in the manufacturing environment, a single dispatching rule (SDR) cannot consistently attain better results than other rules for dynamic scheduling problems. Dynamic selection of the most appropriate rule from several SDRs based on the Deep Q-Network (DQN) offers better scheduling performance than using an individual SDR. However, the discreteness of action space caused by the DQN and the simplicity of the action as an SDR limit the selection range and restrict performance improvement. Thus, in this paper, we propose a scheduling method based on deep reinforcement learning for the dynamic flexible job-shop scheduling problem (DFJSP), aiming to minimize the mean tardiness. Firstly, a Markov decision process with composite scheduling action is provided to elaborate the flexible job-shop dynamic scheduling process and transform the DFJSP into an RL task. Subsequently, a composite scheduling action aggregated by SDRs and continuous weight variables is designed to provide a continuous rule space and SDR weight selection. Moreover, a reward function related to mean tardiness performance criteria is designed such that maximizing the cumulative reward is equivalent to minimizing the mean tardiness. Finally, a policy network with states as inputs and weights as outputs is constructed to generate the scheduling decision at each decision point. Also, the deep deterministic policy gradient (DDPG) algorithm is used to train the policy network to select the most appropriate weights at each decision point, thereby aggregating the SDRs into a better rule. Results from numerical experiments reveal that the proposed scheduling method achieves significantly better scheduling results than an SDR and the DQN-based method in dynamically changeable manufacturing environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助Khr1stINK采纳,获得10
刚刚
cora发布了新的文献求助10
刚刚
shelly0621发布了新的文献求助10
刚刚
中华有为发布了新的文献求助10
刚刚
特兰克斯发布了新的文献求助10
刚刚
Ares完成签到,获得积分10
1秒前
1秒前
在水一方应助garyaa采纳,获得10
1秒前
DAN_完成签到,获得积分10
2秒前
2秒前
科研通AI2S应助屹舟采纳,获得10
2秒前
科研通AI5应助一一采纳,获得10
3秒前
隐形的紫菜完成签到,获得积分10
3秒前
23132发布了新的文献求助10
4秒前
cora完成签到,获得积分10
5秒前
放眼天下完成签到 ,获得积分10
6秒前
文毛完成签到,获得积分10
6秒前
6秒前
7秒前
兴奋的问旋完成签到,获得积分10
7秒前
张张完成签到,获得积分10
7秒前
陈文学完成签到,获得积分10
8秒前
一一发布了新的文献求助10
8秒前
bkagyin应助潇洒的冷玉采纳,获得10
9秒前
通~发布了新的文献求助10
9秒前
9秒前
芒果完成签到,获得积分10
9秒前
10秒前
cly3397完成签到,获得积分10
10秒前
开心发布了新的文献求助10
10秒前
10秒前
少年发布了新的文献求助10
11秒前
天天快乐应助阿毛采纳,获得10
11秒前
Jenny应助狂野的以珊采纳,获得10
11秒前
12秒前
12秒前
13秒前
14秒前
研友_LMNjkn发布了新的文献求助10
14秒前
ding应助科研通管家采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794