Dynamic scheduling for flexible job shop using a deep reinforcement learning approach

拖延 强化学习 计算机科学 动态优先级调度 调度(生产过程) 马尔可夫决策过程 数学优化 动作选择 作业车间调度 人工智能 马尔可夫过程 数学 地铁列车时刻表 生物 统计 感知 操作系统 神经科学
作者
Yong Gui,Dunbing Tang,Haihua Zhu,Yi Zhang,Zequn Zhang
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:180: 109255-109255 被引量:132
标识
DOI:10.1016/j.cie.2023.109255
摘要

Due to the influence of dynamic changes in the manufacturing environment, a single dispatching rule (SDR) cannot consistently attain better results than other rules for dynamic scheduling problems. Dynamic selection of the most appropriate rule from several SDRs based on the Deep Q-Network (DQN) offers better scheduling performance than using an individual SDR. However, the discreteness of action space caused by the DQN and the simplicity of the action as an SDR limit the selection range and restrict performance improvement. Thus, in this paper, we propose a scheduling method based on deep reinforcement learning for the dynamic flexible job-shop scheduling problem (DFJSP), aiming to minimize the mean tardiness. Firstly, a Markov decision process with composite scheduling action is provided to elaborate the flexible job-shop dynamic scheduling process and transform the DFJSP into an RL task. Subsequently, a composite scheduling action aggregated by SDRs and continuous weight variables is designed to provide a continuous rule space and SDR weight selection. Moreover, a reward function related to mean tardiness performance criteria is designed such that maximizing the cumulative reward is equivalent to minimizing the mean tardiness. Finally, a policy network with states as inputs and weights as outputs is constructed to generate the scheduling decision at each decision point. Also, the deep deterministic policy gradient (DDPG) algorithm is used to train the policy network to select the most appropriate weights at each decision point, thereby aggregating the SDRs into a better rule. Results from numerical experiments reveal that the proposed scheduling method achieves significantly better scheduling results than an SDR and the DQN-based method in dynamically changeable manufacturing environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OGLE应助LU采纳,获得20
刚刚
刚刚
刚刚
1秒前
曹梦梦完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
友好太兰完成签到,获得积分10
3秒前
黑米粥发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
slayersqin完成签到 ,获得积分10
5秒前
在水一方应助111采纳,获得10
5秒前
小罗黑的发布了新的文献求助10
6秒前
7秒前
明昼完成签到,获得积分10
7秒前
7秒前
7秒前
多巴胺完成签到,获得积分10
7秒前
8秒前
微笑迎曼发布了新的文献求助30
8秒前
六六发布了新的文献求助10
8秒前
哈哈哈发布了新的文献求助10
8秒前
杨锐发布了新的文献求助10
8秒前
Hello应助oo采纳,获得10
8秒前
9秒前
9秒前
洛城l发布了新的文献求助10
9秒前
9秒前
科目三应助三块石头采纳,获得10
9秒前
10秒前
所所应助Wnnnn采纳,获得10
10秒前
科研通AI6应助姜萌萌采纳,获得10
10秒前
zar完成签到,获得积分10
12秒前
12秒前
13秒前
宋温暖应助wuran采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629991
求助须知:如何正确求助?哪些是违规求助? 4721324
关于积分的说明 14972153
捐赠科研通 4788008
什么是DOI,文献DOI怎么找? 2556688
邀请新用户注册赠送积分活动 1517740
关于科研通互助平台的介绍 1478342