亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic scheduling for flexible job shop using a deep reinforcement learning approach

拖延 强化学习 计算机科学 动态优先级调度 调度(生产过程) 马尔可夫决策过程 数学优化 动作选择 作业车间调度 人工智能 马尔可夫过程 数学 地铁列车时刻表 生物 统计 感知 操作系统 神经科学
作者
Yong Gui,Dunbing Tang,Haihua Zhu,Yi Zhang,Zequn Zhang
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:180: 109255-109255 被引量:132
标识
DOI:10.1016/j.cie.2023.109255
摘要

Due to the influence of dynamic changes in the manufacturing environment, a single dispatching rule (SDR) cannot consistently attain better results than other rules for dynamic scheduling problems. Dynamic selection of the most appropriate rule from several SDRs based on the Deep Q-Network (DQN) offers better scheduling performance than using an individual SDR. However, the discreteness of action space caused by the DQN and the simplicity of the action as an SDR limit the selection range and restrict performance improvement. Thus, in this paper, we propose a scheduling method based on deep reinforcement learning for the dynamic flexible job-shop scheduling problem (DFJSP), aiming to minimize the mean tardiness. Firstly, a Markov decision process with composite scheduling action is provided to elaborate the flexible job-shop dynamic scheduling process and transform the DFJSP into an RL task. Subsequently, a composite scheduling action aggregated by SDRs and continuous weight variables is designed to provide a continuous rule space and SDR weight selection. Moreover, a reward function related to mean tardiness performance criteria is designed such that maximizing the cumulative reward is equivalent to minimizing the mean tardiness. Finally, a policy network with states as inputs and weights as outputs is constructed to generate the scheduling decision at each decision point. Also, the deep deterministic policy gradient (DDPG) algorithm is used to train the policy network to select the most appropriate weights at each decision point, thereby aggregating the SDRs into a better rule. Results from numerical experiments reveal that the proposed scheduling method achieves significantly better scheduling results than an SDR and the DQN-based method in dynamically changeable manufacturing environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
冷傲的薯片完成签到,获得积分10
25秒前
28秒前
Tim888完成签到,获得积分10
28秒前
ZanE完成签到,获得积分10
33秒前
34秒前
50秒前
青栞完成签到,获得积分10
1分钟前
1分钟前
希望天下0贩的0应助kosangel采纳,获得10
1分钟前
青栞发布了新的文献求助10
1分钟前
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
kosangel发布了新的文献求助10
1分钟前
Tonson应助fly采纳,获得10
1分钟前
1分钟前
阿瓜师傅发布了新的文献求助10
1分钟前
郝誉发布了新的文献求助10
1分钟前
fly完成签到,获得积分10
1分钟前
1分钟前
踏实白柏发布了新的文献求助10
2分钟前
在水一方应助踏实白柏采纳,获得10
2分钟前
脑洞疼应助DX120210165采纳,获得30
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
DX120210165发布了新的文献求助30
2分钟前
2分钟前
kosangel完成签到,获得积分20
2分钟前
3分钟前
52发布了新的文献求助10
3分钟前
赘婿应助舒适博超采纳,获得10
3分钟前
美满尔蓝完成签到,获得积分10
3分钟前
52完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
andrele发布了新的文献求助10
3分钟前
DX120210165完成签到,获得积分10
3分钟前
不再挨训完成签到 ,获得积分10
3分钟前
3分钟前
lyon完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476333
求助须知:如何正确求助?哪些是违规求助? 4578009
关于积分的说明 14363307
捐赠科研通 4505917
什么是DOI,文献DOI怎么找? 2468931
邀请新用户注册赠送积分活动 1456508
关于科研通互助平台的介绍 1430196