A deep learning model for drug screening and evaluation in bladder cancer organoids

类有机物 计算机科学 分割 人工智能 软件 背景(考古学) 图像分割 深度学习 机器学习 特征(语言学) 模式识别(心理学) 生物 神经科学 古生物学 语言学 哲学 程序设计语言
作者
Shudi Zhang,Lu Li,Pengfei Yu,Chunyue Wu,Xiaowen Wang,Meng Liu,Shuangsheng Deng,Chunming Guo,Ruirong Tan
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:13
标识
DOI:10.3389/fonc.2023.1064548
摘要

Three-dimensional cell tissue culture, which produces biological structures termed organoids, has rapidly promoted the progress of biological research, including basic research, drug discovery, and regenerative medicine. However, due to the lack of algorithms and software, analysis of organoid growth is labor intensive and time-consuming. Currently it requires individual measurements using software such as ImageJ, leading to low screening efficiency when used for a high throughput screen. To solve this problem, we developed a bladder cancer organoid culture system, generated microscopic images, and developed a novel automatic image segmentation model, AU2Net (Attention and Cross U2Net). Using a dataset of two hundred images from growing organoids (day1 to day 7) and organoids with or without drug treatment, our model applies deep learning technology for image segmentation. To further improve the accuracy of model prediction, a variety of methods are integrated to improve the model’s specificity, including adding Grouping Cross Merge (GCM) modules at the model’s jump joints to strengthen the model’s feature information. After feature information acquisition, a residual attentional gate (RAG) is added to suppress unnecessary feature propagation and improve the precision of organoids segmentation by establishing rich context-dependent models for local features. Experimental results show that each optimization scheme can significantly improve model performance. The sensitivity, specificity, and F1-Score of the ACU2Net model reached 94.81%, 88.50%, and 91.54% respectively, which exceed those of U-Net, Attention U-Net, and other available network models. Together, this novel ACU2Net model can provide more accurate segmentation results from organoid images and can improve the efficiency of drug screening evaluation using organoids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
干净含烟发布了新的文献求助10
5秒前
XxxxxxENT完成签到,获得积分10
5秒前
7秒前
8秒前
高大的大米完成签到,获得积分10
8秒前
yn完成签到 ,获得积分10
9秒前
SSSYYY完成签到,获得积分10
9秒前
一看论文就困完成签到,获得积分10
9秒前
寒冷寻桃完成签到 ,获得积分10
10秒前
期许完成签到,获得积分10
10秒前
脑洞疼应助mysoul123采纳,获得10
10秒前
乐乐乐乐乐乐应助jerry采纳,获得10
11秒前
Hyh_发布了新的文献求助10
12秒前
Xiaoyan完成签到,获得积分10
12秒前
Aprilapple发布了新的文献求助10
15秒前
非要叫我起个昵称完成签到,获得积分10
15秒前
dawn完成签到,获得积分20
16秒前
17秒前
坦率的妙柏关注了科研通微信公众号
19秒前
mysoul123发布了新的文献求助10
24秒前
25秒前
dawn发布了新的文献求助10
26秒前
务实蓝完成签到 ,获得积分10
29秒前
30秒前
稻草人发布了新的文献求助30
31秒前
山高完成签到,获得积分10
31秒前
在水一方应助虚拟的凝海采纳,获得10
32秒前
33秒前
mysoul123完成签到 ,获得积分10
37秒前
MOhy发布了新的文献求助10
37秒前
Aprilapple完成签到,获得积分10
39秒前
可爱的函函应助活力冬日采纳,获得10
40秒前
迷人凉面完成签到 ,获得积分10
41秒前
田様应助小吴小吴小吴采纳,获得10
43秒前
Jasper应助MOhy采纳,获得10
43秒前
伶俐的春天完成签到 ,获得积分10
44秒前
糊涂的皮卡丘完成签到 ,获得积分10
44秒前
45秒前
文艺的夏青完成签到,获得积分10
46秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140205
求助须知:如何正确求助?哪些是违规求助? 2790982
关于积分的说明 7797336
捐赠科研通 2447358
什么是DOI,文献DOI怎么找? 1301860
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194