Metal phenolic networks (MPNs)-based pH-sensitive stimulus responsive nanosystems for drug delivery in tumor microenvironment

药物输送 纳米技术 肿瘤微环境 药品 神经科学 医学 药理学 材料科学 心理学 癌症研究 肿瘤细胞
作者
Arbab Ali,Rabia Javed,Sahar Farhangi,Tufail Shah,Sana Ullah,Noor ul Ain,Tao Liu,Zhiling Guo,Iseult Lynch,Faisal Raza,Peng Zhang,Yukui Rui
出处
期刊:Journal of Drug Delivery Science and Technology [Elsevier]
卷期号:84: 104536-104536 被引量:13
标识
DOI:10.1016/j.jddst.2023.104536
摘要

The tumor microenvironment (TME) is a dynamic and complex system characterized by different cellular, molecular, and physiological heterogeneity. Therefore, conventional drug delivery strategies often failed to deliver an effective dosage to kill cancerous cells. In recent years, the development of nano-based drug delivery has expanded into a wide range of clinical applications to address the limitations of free therapeutics and voyage the biological barriers. Recently, stimuli-responsive metal phenolic networks (MPNs) have recently become a focus of intense scientific investigation in biomedical applications, and offer a versatile platform for controlled release of therapeutics in TME. This review provides a timely and thorough description of the use of a MPNs in the rapidly evolving field of advanced drug delivery with insights unique to pH-stimulus responsive systems. This review aims to offer an in-depth understanding of the potential use of MPNs as pH-sensitive therapeutics carriers in TME. We briefly explained the endogenous pH-associated factors affecting the therapeutics delivery in TME. A cross comparison of the advantages and disadvantages of MPNs with other counterparts are highlighted to elucidate their key design principles for pH-stimulus responsive drug delivery in TME. In later sections, pros and cons of MPNs as well as current challenges and future perspectives are also discussed, which will deepen our understanding of designing, fabricating, and applying MPNs for advanced therapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Y123发布了新的文献求助10
1秒前
sissi应助狗子爱吃桃桃采纳,获得30
1秒前
李八八完成签到,获得积分10
2秒前
冷酷的柜门完成签到,获得积分10
3秒前
柔弱亦寒发布了新的文献求助10
4秒前
4秒前
4秒前
星辰大海应助ido采纳,获得10
4秒前
人木发布了新的文献求助10
7秒前
7秒前
8秒前
领导范儿应助梨涡采纳,获得10
8秒前
传奇3应助Yang采纳,获得10
8秒前
姜忆霜发布了新的文献求助10
8秒前
啵赞的龟丝儿完成签到,获得积分10
9秒前
10秒前
海洋调完成签到,获得积分10
10秒前
11秒前
13秒前
传奇3应助倪倪采纳,获得10
13秒前
情怀应助危机的雨梅采纳,获得10
13秒前
14秒前
15秒前
李爱国应助科研民工采纳,获得10
15秒前
程瀚砚发布了新的文献求助10
15秒前
墨点完成签到 ,获得积分10
15秒前
tang发布了新的文献求助10
16秒前
t团子发布了新的文献求助10
18秒前
JUST完成签到,获得积分10
18秒前
爆米花应助简单的芷云采纳,获得10
19秒前
朱朱朱完成签到,获得积分10
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
小二郎应助科研通管家采纳,获得10
21秒前
急急国王应助科研通管家采纳,获得10
21秒前
李健应助科研通管家采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306895
求助须知:如何正确求助?哪些是违规求助? 2940756
关于积分的说明 8498339
捐赠科研通 2614923
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663445
邀请新用户注册赠送积分活动 648297