Facile in-situ grown spinel MnCo2O4/MWCNT and MnCo2O4/Ti3C2 MXene composites for high-performance asymmetric supercapacitor with theoretical insight

电容 材料科学 复合数 超级电容器 功率密度 复合材料 储能 尖晶石 电流密度 功率(物理) 电化学 化学 冶金 电极 物理化学 物理 量子力学
作者
Mansi Pathak,Pratap Mane,Brahmananda Chakraborty,Chandra Sekhar Rout
出处
期刊:Journal of energy storage [Elsevier]
卷期号:66: 107475-107475 被引量:26
标识
DOI:10.1016/j.est.2023.107475
摘要

The logical construction of electrode materials along with greater electrochemical features and solid architectural design is a strategic approach for boosting the electrochemical performance of supercapacitors. However, it is tough and complicated to develop diverse composite materials with better electronic conductivity and greater specific capacitance via rapid and cost-effective synthesis procedures. Herein, we propose a straightforward and simple approach by employing the hydrothermal technique for the synthesis of spinel MnCo2O4 composite nanostructures using 1D MWCNT and 2D MXene (Ti3C2Tx) materials with detailed analysis of the supercapacitor performance as compared to existing literature on similar studies. The MCO/TCX (MnCo2O4/Ti3C2Tx) composite shows an impressive capacitance of 860.22 F/g at a current density of 2 A/g after electrochemical optimization. Furthermore, an asymmetric supercapacitor device (ASCs) was constructed using MCO and its composites MCO/MWCNT and MCO/TCX as a positive, and AC was employed as a negative electrode to test its device capability. Comparatively, the MCO/TCX//AC SC device demonstrated exceptional energy storage properties with a better specific capacitance value of 126.58 F/g at 0.8 A/g of current density, an elevated energy density of 40 Wh/kg, with a power density of 4828 W/kg along a capacitance retention rate of 87 % over 5000 cycles, suggesting better cycle life. Whereas, the MCO/MWCNT//AC device shows a better cycling performance of 91 % after 5000 cycles with a superior energy and power density of 27.04 Wh/kg and 1448 W/kg respectively. Also the theoretical insight for further understanding of the charge-storage mechanism through DFT calculations provides an estimate of electronic properties and quantum capacitance calculated for the pristine MCO and its hybrids with CNT and Ti3C2Tx MXene and information on the interactions between orbitals, the bonding process, and the charge transfer capabilities of each electrode material. The theoretical studies also confirm that the electronic properties and therein charge storage performance have an increasing trend in the order of MCO < MCO/CNT < MCO/TCX consistent with the experimental findings. Additionally, these simulations conclude that the hybrid MCO/TCX has the largest quantum capacitance which is in accordance with the findings of the experiments. The improved performance of MCO/TCX is due to the enlarged surface area that allows higher charge transfer from TCX to MCO. The charge transferred from the C 2p orbital of TCX to the Mn 3d orbital of MCO is the leading cause for the capacitance improvement mechanism of hybrid MCO/TCX. This work offers a simple procedure for developing energy storage devices using spinel MnCo2O4-based composite electrode materials supported by 1D carbon nanotube and 2D MXene that offer superior electrochemical performance and the fabricated electrodes that could be employed further for energy storage-based applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
Shan完成签到,获得积分10
2秒前
Lucas应助wr0112采纳,获得10
2秒前
胡真完成签到 ,获得积分10
2秒前
Ann发布了新的文献求助30
3秒前
paul发布了新的文献求助10
3秒前
zyj完成签到,获得积分10
3秒前
4秒前
Orange应助魔幻的冬寒采纳,获得10
4秒前
Sylvia发布了新的文献求助10
5秒前
6秒前
归尘发布了新的文献求助10
6秒前
面包超人发布了新的文献求助10
7秒前
7秒前
熊小子爱学习完成签到,获得积分10
8秒前
大模型应助zz采纳,获得10
9秒前
小巧曼安发布了新的文献求助10
10秒前
文章哭哭发完成签到,获得积分10
10秒前
10秒前
11秒前
泯恩仇完成签到,获得积分10
11秒前
十七发布了新的文献求助10
11秒前
坚强的广山应助熠熠畅采纳,获得300
11秒前
领导范儿应助缺粥采纳,获得10
11秒前
13秒前
FBQZDJG2122完成签到,获得积分10
14秒前
15秒前
15秒前
灵巧高山应助橙果果采纳,获得10
16秒前
17秒前
liuran关注了科研通微信公众号
17秒前
17秒前
yi发布了新的文献求助10
18秒前
Sylvia完成签到,获得积分10
19秒前
暂时想不到昵称完成签到,获得积分10
19秒前
19秒前
19秒前
去偷火龙果完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552436
求助须知:如何正确求助?哪些是违规求助? 3128534
关于积分的说明 9378502
捐赠科研通 2827678
什么是DOI,文献DOI怎么找? 1554508
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714961