Gene‐level association analysis of bivariate ordinal traits with functional regressions

序数数据 序数回归 二元分析 统计 有序逻辑 阈值模型 I类和II类错误 潜变量 数学
作者
Shuqi Wang,Chi-Yang Chiu,Alexander F. Wilson,Joan E. Bailey-Wilson,Elvira Agron,Emily Y Chew,Jaeil Ahn,Momiao Xiong,Ruzong Fan
出处
期刊:Genetic Epidemiology [Wiley]
标识
DOI:10.1002/gepi.22524
摘要

In genetic studies, many phenotypes have multiple naturally ordered discrete values. The phenotypes can be correlated with each other. If multiple correlated ordinal traits are analyzed simultaneously, the power of analysis may increase significantly while the false positives can be controlled well. In this study, we propose bivariate functional ordinal linear regression (BFOLR) models using latent regressions with cumulative logit link or probit link to perform a gene-based analysis for bivariate ordinal traits and sequencing data. In the proposed BFOLR models, genetic variant data are viewed as stochastic functions of physical positions, and the genetic effects are treated as a function of physical positions. The BFOLR models take the correlation of the two ordinal traits into account via latent variables. The BFOLR models are built upon functional data analysis which can be revised to analyze the bivariate ordinal traits and high-dimension genetic data. The methods are flexible and can analyze three types of genetic data: (1) rare variants only, (2) common variants only, and (3) a combination of rare and common variants. Extensive simulation studies show that the likelihood ratio tests of the BFOLR models control type I errors well and have good power performance. The BFOLR models are applied to analyze Age-Related Eye Disease Study data, in which two genes, CFH and ARMS2, are found to strongly associate with eye drusen size, drusen area, age-related macular degeneration (AMD) categories, and AMD severity scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈以珊完成签到,获得积分10
刚刚
1秒前
科研通AI5应助okko采纳,获得10
4秒前
4秒前
5秒前
ban发布了新的文献求助30
6秒前
6秒前
无限的紫蓝完成签到,获得积分20
6秒前
妖哥发布了新的文献求助10
9秒前
10秒前
swing发布了新的文献求助10
11秒前
彭仲康发布了新的文献求助30
11秒前
11秒前
14秒前
afatinib完成签到,获得积分10
17秒前
吖吖完成签到,获得积分20
18秒前
18秒前
18秒前
cwm完成签到,获得积分10
20秒前
20秒前
Andy完成签到,获得积分10
20秒前
swing完成签到,获得积分20
22秒前
22秒前
24秒前
谷谷发布了新的文献求助10
24秒前
26秒前
赣南橙发布了新的文献求助30
26秒前
小蘑菇应助永远采纳,获得10
27秒前
骜111完成签到,获得积分10
28秒前
搜集达人应助演化的蛙鱼采纳,获得10
29秒前
在水一方应助yangyang采纳,获得10
30秒前
忘崽子小拳头完成签到,获得积分10
30秒前
31秒前
隐形曼青应助Russula_Chu采纳,获得30
31秒前
小a发布了新的文献求助10
31秒前
fhw完成签到 ,获得积分10
31秒前
传奇3应助刻苦鼠标采纳,获得20
32秒前
代代完成签到,获得积分10
34秒前
科研通AI5应助赣南橙采纳,获得30
36秒前
棠真完成签到 ,获得积分10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738291
求助须知:如何正确求助?哪些是违规求助? 3281789
关于积分的说明 10026606
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645317
邀请新用户注册赠送积分活动 782748
科研通“疑难数据库(出版商)”最低求助积分说明 749901