Learning enhanced specific representations for multi-view feature learning

财产(哲学) 计算机科学 成对比较 代表(政治) 特征(语言学) 人工智能 加权 特征学习 机器学习 理论计算机科学 模式识别(心理学) 医学 哲学 语言学 认识论 政治 政治学 法学 放射科
作者
Yaru Hao,Xiao‐Yuan Jing,Runhang Chen,Wei Liu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:272: 110590-110590 被引量:2
标识
DOI:10.1016/j.knosys.2023.110590
摘要

Multi-view data has two basic characteristics: consensus property and complementary property, in which complementary information refers to all view-specific information. Inspired by the popular saying "The whole is greater than the sum of its parts", we introduce the concepts of "parts", "sum of its parts" and "whole" into multi-view feature learning. When view-specific information is regarded as the "parts", the complementary information consisting of all view-specific information would correspond to the "sum of its parts". To explore the "whole" information, we propose the Learning Enhanced Specific Representations for Multi-view Feature Learning (MvESR) approach, which points to learning the enhanced view-specific information through beneficial interactions between views. Specifically, MvESR concatenates all view-specific representations as the "sum" information. Based on the "sum" information, MvESR obtains the enhanced view-specific information through an element-wise addition between view-specific representation and the "sum" representation. Then the complementary information consisting of enhanced view-specific representations can be regarded as the "whole". In addition, MvESR obtains cross-view consensus information between each pairwise views, then concatenates them as fused cross-view consensus information. Considering that different representations may have different contributions for classification, we design an adaptive-weighting loss fusion strategy for multi-view classification. Experimental results on six large-scale public datasets verify that the proposed approach outperforms the compared methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助MR采纳,获得10
刚刚
852应助ellen采纳,获得10
刚刚
poet泸沽发布了新的文献求助10
1秒前
可可完成签到 ,获得积分10
2秒前
矜悠发布了新的文献求助10
2秒前
2秒前
2秒前
耍酷擎发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
抗体小王发布了新的文献求助10
3秒前
英俊的铭应助嗷嗷采纳,获得10
3秒前
勤奋静曼发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
所所应助清脆的灵煌采纳,获得10
7秒前
Aurora发布了新的文献求助10
7秒前
等待的太阳完成签到,获得积分10
7秒前
7秒前
默默柚子发布了新的文献求助10
8秒前
8秒前
TQY发布了新的文献求助20
9秒前
月光发布了新的文献求助10
9秒前
欣喜迎天发布了新的文献求助10
9秒前
爆米花应助ordin采纳,获得10
9秒前
10秒前
10秒前
大个应助天天采纳,获得10
10秒前
科研通AI5应助ruilong采纳,获得10
11秒前
11秒前
bbczj发布了新的文献求助10
12秒前
12秒前
12秒前
燕子发布了新的文献求助10
12秒前
风之子发布了新的文献求助10
12秒前
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524656
求助须知:如何正确求助?哪些是违规求助? 3105505
关于积分的说明 9274438
捐赠科研通 2802572
什么是DOI,文献DOI怎么找? 1538099
邀请新用户注册赠送积分活动 716017
科研通“疑难数据库(出版商)”最低求助积分说明 709140