Constructing direct Z-scheme heterojunction of NiCo-LDH coated with g-C3N4 for boosting photocatalytic H2 evolution

光催化 异质结 Boosting(机器学习) 材料科学 方案(数学) 化学工程 光电子学 化学 计算机科学 数学 人工智能 催化作用 工程类 生物化学 数学分析
作者
Qinyi Gu,Chujun Feng,Congtian Liu,Jian Rong,Yuzhe Zhang,Xudong Zheng,Zhongyu Li,Song Xu
出处
期刊:Fuel [Elsevier]
卷期号:371: 131982-131982 被引量:14
标识
DOI:10.1016/j.fuel.2024.131982
摘要

The photocatalytic decomposition of water to produce hydrogen (H2) is considered to be an effective method to mitigate the influence of greenhouse effect. In this work, NiCo-LDH/g-C3N4 (NCH/SCN) photocatalysts with direct Z-scheme heterojunction for photocatalytic H2 evolution are synthesized by in situ hydrothermal growth method. It is worth mentioning that the optimized NCH/SCN heterojunction with strong light response exhibits the best H2 evolution performance of 3125 μmol·g−1·h−1, and the apparent quantum yield (AQY) reaches 7.35% at 420 nm. Smoke-like g-C3N4 (SCN) prepared by supramolecular self-assembly method shows a wide triazine ring spacing, which improves electron transfer performance and enhances stability. In addition, the porous structure of SCN is conducive to closely binding with flower-like NiCo-LDH (NCH) to construct direct Z-scheme heterojunction. The reduction of electron transport distance and the presence of internal electric field (IEF) in heterojunction promote the separation of photo-generated carriers. At the same time, NCH/SCN still shows good photocatalytic performance after five cyclic experiments. Characterizations such as valence-band spectrum, work function and density of states were used to analyze the energy band and electronic structure of NCH/SCN, the electron migration path and photocatalytic mechanism were also deduced. This study provides useful strategy for constructing Z-scheme heterojunctions between g-C3N4 and layered double hydroxides (LDHs) to improve photocatalytic H2 evolution performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发嗲的芷发布了新的文献求助10
2秒前
优美可燕完成签到,获得积分20
3秒前
5秒前
5秒前
柯一一完成签到,获得积分0
5秒前
传奇3应助不散的和弦采纳,获得10
6秒前
冰河完成签到 ,获得积分10
6秒前
会飞完成签到,获得积分10
7秒前
chens627完成签到,获得积分10
7秒前
坚强的不愁完成签到,获得积分10
7秒前
jiujiuji发布了新的文献求助10
8秒前
8秒前
小余同学完成签到,获得积分10
9秒前
乐乐应助GGbond采纳,获得10
9秒前
万能图书馆应助GGbond采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
Ye完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
Tina完成签到,获得积分10
14秒前
领导范儿应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
ccmxigua应助科研通管家采纳,获得10
15秒前
欢呼乘风应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得30
15秒前
浮游应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
CDQ完成签到,获得积分10
17秒前
17秒前
18秒前
所所应助halo采纳,获得10
18秒前
隐形曼青应助优TT采纳,获得10
18秒前
18秒前
QWSS发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858