Problem-Specific Knowledge Based Multi-Objective Meta-Heuristics Combined Q-Learning for Scheduling Urban Traffic Lights With Carbon Emissions

启发式 调度(生产过程) 计算机科学 运输工程 数学优化 人工智能 运筹学 工程类 数学 操作系统
作者
Zhongjie Lin,Kaizhou Gao,Naiqi Wu,Ponnuthurai Nagaratnam Suganthan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 15053-15064 被引量:5
标识
DOI:10.1109/tits.2024.3397077
摘要

In complex and variable traffic environments, efficient multi-objective urban traffic light scheduling is imperative. However, the carbon emission problem accompanying traffic delays is often neglected in most existing literature. This study focuses on multi-objective urban traffic light scheduling problems (MOUTLSP), concerning traffic delays and carbon emissions simultaneously. First, a multi-objective mathematical model is firstly developed to describe MOUTLSP to minimize vehicle delays, pedestrian delays, and carbon emissions. Second, three well-known meta-heuristics, namely genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE), are improved to solve MOUTLSP. Six problem-feature-based local search operators (LSO) are designed based on the solution structure and incorporated into the iterative process of meta-heuristics. Third, the problem nature is utilized to design two novel Q-learning-based strategies for algorithm and LSO selection, respectively. The Q-learning-based algorithm selection (QAS) strategy guides non-dominated solutions to obtain a good trade-off among three objectives and generates high-quality solutions by selecting suitable algorithms. The Q-learning-based local search selection (QLSS) strategies are employed to seek premium neighborhood solutions throughout the iterative process for improving the convergence speed. The effectiveness of the improvement strategies is verified by solving 11 instances with different scales. The proposed algorithms with Q-learning-based strategies are compared with two classical multi-objective algorithms and some state-of-the-art algorithms for solving urban traffic light scheduling problems. The experimental results and comparisons demonstrate that the proposed GA $+$ QLSS, a variant of GA, is the most competitive one. This research proposes new ideas for urban traffic light scheduling with three objectives by Q-learning assisted evolutionary algorithms firstly. It provides strong support for achieving more efficient and environmentally friendly urban traffic management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助Luisa采纳,获得10
刚刚
FashionBoy应助nixiaozhi采纳,获得10
刚刚
1秒前
霖总发布了新的文献求助10
1秒前
2秒前
2秒前
dr.du完成签到 ,获得积分10
2秒前
归尘发布了新的文献求助10
2秒前
lily发布了新的文献求助10
3秒前
3秒前
科研通AI6应助feixue采纳,获得10
4秒前
终梦发布了新的文献求助10
4秒前
hardtime完成签到,获得积分20
4秒前
kkk完成签到,获得积分10
4秒前
可乐喝九瓶完成签到,获得积分10
5秒前
泡芙发布了新的文献求助10
5秒前
科研战士完成签到,获得积分10
5秒前
华仔应助GongFei采纳,获得10
6秒前
6秒前
BuMAMAHAHA完成签到,获得积分10
6秒前
科研通AI5应助Queena采纳,获得10
7秒前
7秒前
kuaikuai发布了新的文献求助30
7秒前
8秒前
8秒前
优美的书雪完成签到,获得积分20
8秒前
8秒前
Alex应助白桃枝采纳,获得20
9秒前
终梦完成签到,获得积分10
9秒前
9秒前
杨多望发布了新的文献求助10
9秒前
CC完成签到 ,获得积分10
11秒前
fzzf发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
晓薇发布了新的文献求助10
12秒前
顾矜应助kuaikuai采纳,获得10
12秒前
我是老大应助赵珺采纳,获得10
12秒前
科研通AI6应助ni采纳,获得10
12秒前
abner完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4884272
求助须知:如何正确求助?哪些是违规求助? 4169600
关于积分的说明 12938186
捐赠科研通 3930023
什么是DOI,文献DOI怎么找? 2156406
邀请新用户注册赠送积分活动 1174785
关于科研通互助平台的介绍 1079562