Problem-Specific Knowledge Based Multi-Objective Meta-Heuristics Combined Q-Learning for Scheduling Urban Traffic Lights With Carbon Emissions

启发式 调度(生产过程) 计算机科学 运输工程 数学优化 人工智能 运筹学 工程类 数学 操作系统
作者
Zhongjie Lin,Kaizhou Gao,Naiqi Wu,Ponnuthurai Nagaratnam Suganthan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 15053-15064 被引量:23
标识
DOI:10.1109/tits.2024.3397077
摘要

In complex and variable traffic environments, efficient multi-objective urban traffic light scheduling is imperative. However, the carbon emission problem accompanying traffic delays is often neglected in most existing literature. This study focuses on multi-objective urban traffic light scheduling problems (MOUTLSP), concerning traffic delays and carbon emissions simultaneously. First, a multi-objective mathematical model is firstly developed to describe MOUTLSP to minimize vehicle delays, pedestrian delays, and carbon emissions. Second, three well-known meta-heuristics, namely genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE), are improved to solve MOUTLSP. Six problem-feature-based local search operators (LSO) are designed based on the solution structure and incorporated into the iterative process of meta-heuristics. Third, the problem nature is utilized to design two novel Q-learning-based strategies for algorithm and LSO selection, respectively. The Q-learning-based algorithm selection (QAS) strategy guides non-dominated solutions to obtain a good trade-off among three objectives and generates high-quality solutions by selecting suitable algorithms. The Q-learning-based local search selection (QLSS) strategies are employed to seek premium neighborhood solutions throughout the iterative process for improving the convergence speed. The effectiveness of the improvement strategies is verified by solving 11 instances with different scales. The proposed algorithms with Q-learning-based strategies are compared with two classical multi-objective algorithms and some state-of-the-art algorithms for solving urban traffic light scheduling problems. The experimental results and comparisons demonstrate that the proposed GA $+$ QLSS, a variant of GA, is the most competitive one. This research proposes new ideas for urban traffic light scheduling with three objectives by Q-learning assisted evolutionary algorithms firstly. It provides strong support for achieving more efficient and environmentally friendly urban traffic management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunyanghu369发布了新的文献求助10
刚刚
Kinkrit完成签到 ,获得积分10
刚刚
英俊的铭应助复杂曼梅采纳,获得10
刚刚
萧萧完成签到,获得积分10
刚刚
Reese发布了新的文献求助10
1秒前
1秒前
小郑顺利毕业完成签到,获得积分10
1秒前
lin完成签到,获得积分20
1秒前
2秒前
AAA完成签到,获得积分10
3秒前
阿佳发布了新的文献求助10
4秒前
科研通AI6应助changewoo采纳,获得10
4秒前
华仔应助大海采纳,获得10
6秒前
skywalker完成签到,获得积分10
6秒前
6秒前
7秒前
123456发布了新的文献求助10
7秒前
7秒前
研友_VZG7GZ应助hulahula采纳,获得10
8秒前
爆米花应助勤恳怀梦采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
9秒前
9秒前
Akim应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
希望天下0贩的0应助helo采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
怕黑犀牛应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
大力信封应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
大模型应助科研通管家采纳,获得10
10秒前
北沐完成签到,获得积分10
10秒前
田様应助科研通管家采纳,获得10
10秒前
Stella应助科研通管家采纳,获得30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360857
求助须知:如何正确求助?哪些是违规求助? 4491327
关于积分的说明 13982062
捐赠科研通 4394043
什么是DOI,文献DOI怎么找? 2413707
邀请新用户注册赠送积分活动 1406522
关于科研通互助平台的介绍 1381057