Problem-Specific Knowledge Based Multi-Objective Meta-Heuristics Combined Q-Learning for Scheduling Urban Traffic Lights With Carbon Emissions

启发式 调度(生产过程) 计算机科学 运输工程 数学优化 人工智能 运筹学 工程类 数学 操作系统
作者
Kaizhou Gao,Kaizhou Gao,Naiqi Wu,Ponnuthurai Nagaratnam Suganthan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/tits.2024.3397077
摘要

In complex and variable traffic environments, efficient multi-objective urban traffic light scheduling is imperative. However, the carbon emission problem accompanying traffic delays is often neglected in most existing literature. This study focuses on multi-objective urban traffic light scheduling problems (MOUTLSP), concerning traffic delays and carbon emissions simultaneously. First, a multi-objective mathematical model is firstly developed to describe MOUTLSP to minimize vehicle delays, pedestrian delays, and carbon emissions. Second, three well-known meta-heuristics, namely genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE), are improved to solve MOUTLSP. Six problem-feature-based local search operators (LSO) are designed based on the solution structure and incorporated into the iterative process of meta-heuristics. Third, the problem nature is utilized to design two novel Q-learning-based strategies for algorithm and LSO selection, respectively. The Q-learning-based algorithm selection (QAS) strategy guides non-dominated solutions to obtain a good trade-off among three objectives and generates high-quality solutions by selecting suitable algorithms. The Q-learning-based local search selection (QLSS) strategies are employed to seek premium neighborhood solutions throughout the iterative process for improving the convergence speed. The effectiveness of the improvement strategies is verified by solving 11 instances with different scales. The proposed algorithms with Q-learning-based strategies are compared with two classical multi-objective algorithms and some state-of-the-art algorithms for solving urban traffic light scheduling problems. The experimental results and comparisons demonstrate that the proposed GA $+$ QLSS, a variant of GA, is the most competitive one. This research proposes new ideas for urban traffic light scheduling with three objectives by Q-learning assisted evolutionary algorithms firstly. It provides strong support for achieving more efficient and environmentally friendly urban traffic management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山楂发布了新的文献求助20
3秒前
刘洪均完成签到,获得积分10
3秒前
立仔完成签到 ,获得积分10
8秒前
HCKACECE完成签到 ,获得积分10
11秒前
雪飞杨完成签到 ,获得积分10
13秒前
Linyi完成签到 ,获得积分10
15秒前
背书强完成签到 ,获得积分10
18秒前
哇咔咔完成签到 ,获得积分10
19秒前
房天川完成签到 ,获得积分10
21秒前
黑大侠完成签到 ,获得积分10
22秒前
terryok完成签到,获得积分10
24秒前
小吕完成签到 ,获得积分10
29秒前
slsdianzi完成签到,获得积分10
36秒前
哭泣的映寒完成签到 ,获得积分10
38秒前
Cloud应助平常从蓉采纳,获得20
39秒前
隔壁小王完成签到 ,获得积分10
45秒前
研友_ZA2B68完成签到,获得积分10
46秒前
mike2012完成签到 ,获得积分10
50秒前
大雪完成签到 ,获得积分10
53秒前
临风浩歌完成签到 ,获得积分10
58秒前
lixiang完成签到 ,获得积分10
59秒前
SC完成签到 ,获得积分10
1分钟前
枯叶蝶完成签到 ,获得积分10
1分钟前
Murphy完成签到,获得积分10
1分钟前
zhugao完成签到,获得积分10
1分钟前
平常从蓉完成签到,获得积分10
1分钟前
李健的小迷弟应助Wang采纳,获得10
1分钟前
胖胖橘完成签到 ,获得积分10
1分钟前
文与武完成签到 ,获得积分10
1分钟前
赘婿应助乾三采纳,获得10
1分钟前
欣喜的薯片完成签到 ,获得积分10
1分钟前
霜降完成签到 ,获得积分10
1分钟前
金金完成签到 ,获得积分10
1分钟前
猴子魏完成签到,获得积分10
1分钟前
今后应助山楂采纳,获得10
1分钟前
星辰大海应助朱奕韬采纳,获得10
1分钟前
1分钟前
Wang发布了新的文献求助10
1分钟前
yk完成签到 ,获得积分10
1分钟前
llhh2024完成签到,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146916
求助须知:如何正确求助?哪些是违规求助? 2798171
关于积分的说明 7826798
捐赠科研通 2454724
什么是DOI,文献DOI怎么找? 1306446
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565