Problem-Specific Knowledge Based Multi-Objective Meta-Heuristics Combined Q-Learning for Scheduling Urban Traffic Lights With Carbon Emissions

启发式 调度(生产过程) 计算机科学 运输工程 数学优化 人工智能 运筹学 工程类 数学 操作系统
作者
Zhongjie Lin,Kaizhou Gao,Naiqi Wu,Ponnuthurai Nagaratnam Suganthan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 15053-15064 被引量:5
标识
DOI:10.1109/tits.2024.3397077
摘要

In complex and variable traffic environments, efficient multi-objective urban traffic light scheduling is imperative. However, the carbon emission problem accompanying traffic delays is often neglected in most existing literature. This study focuses on multi-objective urban traffic light scheduling problems (MOUTLSP), concerning traffic delays and carbon emissions simultaneously. First, a multi-objective mathematical model is firstly developed to describe MOUTLSP to minimize vehicle delays, pedestrian delays, and carbon emissions. Second, three well-known meta-heuristics, namely genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE), are improved to solve MOUTLSP. Six problem-feature-based local search operators (LSO) are designed based on the solution structure and incorporated into the iterative process of meta-heuristics. Third, the problem nature is utilized to design two novel Q-learning-based strategies for algorithm and LSO selection, respectively. The Q-learning-based algorithm selection (QAS) strategy guides non-dominated solutions to obtain a good trade-off among three objectives and generates high-quality solutions by selecting suitable algorithms. The Q-learning-based local search selection (QLSS) strategies are employed to seek premium neighborhood solutions throughout the iterative process for improving the convergence speed. The effectiveness of the improvement strategies is verified by solving 11 instances with different scales. The proposed algorithms with Q-learning-based strategies are compared with two classical multi-objective algorithms and some state-of-the-art algorithms for solving urban traffic light scheduling problems. The experimental results and comparisons demonstrate that the proposed GA $+$ QLSS, a variant of GA, is the most competitive one. This research proposes new ideas for urban traffic light scheduling with three objectives by Q-learning assisted evolutionary algorithms firstly. It provides strong support for achieving more efficient and environmentally friendly urban traffic management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lanlan完成签到 ,获得积分10
刚刚
刚刚
1秒前
3秒前
ylq发布了新的文献求助10
3秒前
Lucas应助林海国采纳,获得10
3秒前
rurui发布了新的文献求助10
5秒前
6秒前
我是老大应助11采纳,获得10
7秒前
zyl发布了新的文献求助10
10秒前
10秒前
疯狂的乌发布了新的文献求助10
11秒前
15秒前
ARNI完成签到,获得积分10
19秒前
领导范儿应助疯狂的乌采纳,获得10
22秒前
rurui发布了新的文献求助10
23秒前
烟花应助afbb采纳,获得10
23秒前
zyl完成签到,获得积分10
24秒前
科研通AI5应助灰灰采纳,获得10
27秒前
27秒前
28秒前
李健的粉丝团团长应助ylq采纳,获得10
28秒前
28秒前
搜集达人应助ARNI采纳,获得20
30秒前
听风完成签到 ,获得积分10
31秒前
酷波er应助Ever余儿采纳,获得10
32秒前
domingo发布了新的文献求助10
32秒前
深情安青应助sparrow采纳,获得10
33秒前
从容傲柏发布了新的文献求助10
34秒前
视野胤发布了新的文献求助10
34秒前
华仔应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
ED应助科研通管家采纳,获得10
35秒前
Rondab应助科研通管家采纳,获得10
35秒前
情怀应助科研通管家采纳,获得10
35秒前
斯文败类应助科研通管家采纳,获得10
35秒前
今后应助科研通管家采纳,获得10
35秒前
Lc应助科研通管家采纳,获得10
35秒前
35秒前
无花果应助科研通管家采纳,获得10
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993004
求助须知:如何正确求助?哪些是违规求助? 3533831
关于积分的说明 11263946
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882968
科研通“疑难数据库(出版商)”最低求助积分说明 809629