计算机科学
语法
水准点(测量)
人工智能
任务(项目管理)
自然语言处理
理解力
阅读理解
情绪分析
阅读(过程)
代表(政治)
程序设计语言
语言学
政治
哲学
经济
政治学
管理
法学
地理
大地测量学
作者
Zhou Yong Mei,Huang Wei Feng,Wang Ji Gang,Wang Ze Peng,Dong Zhou,Yang Min
标识
DOI:10.1145/3651671.3651736
摘要
The Aspect Sentiment Triplet Extraction (ASTE) task, which has the goal of extracting sentiment triplets from sentences, has been solved by the Machine Reading Comprehension (MRC) framework. Although the MRC model can effectively handle the ASTE task, there still remain issues. Traditional attention models do not explicitly prioritize and concentrate on the significance of words, which can result in the incorrect emphasis on less crucial words and assign higher attention weights to less important terms. Therefore, in this paper, a syntactically guided model is proposed. It incorporates syntax relationships from input to constrain the attention mechanism. We developed a model called Syntax-Guided Muti-Turn Machine Reading Comprehension (SG-MTMRC), which incorporates syntax relationships into the layer of self-attention by leveraging a Syntax-Guided Network (SG-NET). It creates a syntax-guided self-attention layer to enhance the input representation. Then, we put them into a Muti-Turn Machine Reading Comprehension (MTMRC) model for further processing. Four benchmark datasets are being used for extensive experiments so as to validate our approach's effectiveness. The experiment results indicate significant performance improvement achieved by the SG-MTMRC model.
科研通智能强力驱动
Strongly Powered by AbleSci AI