亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Synchronous Averaging with Sliding Narrowband Filtering for Low-speed Bearing Fault Diagnosis

窄带 方位(导航) 断层(地质) 控制理论(社会学) 声学 计算机科学 工程类 地质学 电子工程 地震学 物理 人工智能 控制(管理)
作者
Yukun Huang,Kun Wang,Zhenhong Deng,Zhengkun Xue,Baoqiang Zhang,Huageng Luo
出处
期刊:Journal of Sound and Vibration [Elsevier]
卷期号:586: 118503-118503 被引量:1
标识
DOI:10.1016/j.jsv.2024.118503
摘要

The health condition of low-speed rolling bearing, such as the main bearing in wind turbines which bears the heavy dead weight and operates under variable speeds, has a big impact on the safe operation of the machinery. Therefore, damage detection of low-speed bearings plays a key role in the health management of large-scale rotating machinery. However, in popular vibration based bearing damage detection algorithms, due to the fact that the additional vibration features incurred by the low-speed operated bearing damage are typically weak in amplitude and low in frequency contents, the additional responses caused by damage are difficult to be isolated by conventional algorithms. Especially, in the cases of variable speed operations, the smearing effect caused by Fourier transform makes it more difficult to extract the damage features by spectrum analysis based methods. To deal with these issues, we developed a damage detection procedure specially designed for bearings operated at low and variable speeds. According to the dynamic properties of the vibration signals incurred by a low-speed bearing with damage, an envelope analysis method based on synchronous averaging with sliding narrow band-pass filters is designed and developed for extracting damage features in the low frequency range. The fundamental theory used in the method is derived first. Then, a damage detection signal processing procedure is constructed based on the elaborated theory. The feasibility and advantages of the proposed methodology are validated by numerical simulations as well as the measured data from a wind turbine field example.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小萌兽完成签到 ,获得积分10
6秒前
迷人世开完成签到,获得积分10
8秒前
12秒前
joe发布了新的文献求助10
17秒前
姜姜完成签到,获得积分10
19秒前
22秒前
烟消云散发布了新的文献求助10
27秒前
33秒前
姜姜发布了新的文献求助20
35秒前
烟消云散发布了新的文献求助10
37秒前
CipherSage应助科研通管家采纳,获得10
47秒前
47秒前
50秒前
姚老表发布了新的文献求助100
51秒前
52秒前
joe完成签到,获得积分10
53秒前
量子星尘发布了新的文献求助10
56秒前
Future完成签到 ,获得积分10
56秒前
Yu发布了新的文献求助10
58秒前
1分钟前
小蘑菇应助輕瘋采纳,获得10
1分钟前
善学以致用应助Yu采纳,获得10
1分钟前
徐矜发布了新的文献求助10
1分钟前
七点半完成签到,获得积分10
1分钟前
1分钟前
情怀应助一直很随意采纳,获得10
1分钟前
1分钟前
我是老大应助Rainy采纳,获得10
1分钟前
1分钟前
烟花应助一直很随意采纳,获得10
1分钟前
1分钟前
yb完成签到,获得积分10
1分钟前
怀民完成签到 ,获得积分10
2分钟前
olekravchenko发布了新的文献求助10
2分钟前
weibo完成签到,获得积分10
2分钟前
无尽夏完成签到 ,获得积分10
2分钟前
等待寄云完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763940
求助须知:如何正确求助?哪些是违规求助? 5545976
关于积分的说明 15405652
捐赠科研通 4899452
什么是DOI,文献DOI怎么找? 2635572
邀请新用户注册赠送积分活动 1583750
关于科研通互助平台的介绍 1538864