亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Synchronous Averaging with Sliding Narrowband Filtering for Low-speed Bearing Fault Diagnosis

窄带 方位(导航) 断层(地质) 控制理论(社会学) 声学 计算机科学 工程类 地质学 电子工程 地震学 物理 人工智能 控制(管理)
作者
Yukun Huang,Kun Wang,Zhenhong Deng,Zhengkun Xue,Baoqiang Zhang,Huageng Luo
出处
期刊:Journal of Sound and Vibration [Elsevier]
卷期号:586: 118503-118503 被引量:1
标识
DOI:10.1016/j.jsv.2024.118503
摘要

The health condition of low-speed rolling bearing, such as the main bearing in wind turbines which bears the heavy dead weight and operates under variable speeds, has a big impact on the safe operation of the machinery. Therefore, damage detection of low-speed bearings plays a key role in the health management of large-scale rotating machinery. However, in popular vibration based bearing damage detection algorithms, due to the fact that the additional vibration features incurred by the low-speed operated bearing damage are typically weak in amplitude and low in frequency contents, the additional responses caused by damage are difficult to be isolated by conventional algorithms. Especially, in the cases of variable speed operations, the smearing effect caused by Fourier transform makes it more difficult to extract the damage features by spectrum analysis based methods. To deal with these issues, we developed a damage detection procedure specially designed for bearings operated at low and variable speeds. According to the dynamic properties of the vibration signals incurred by a low-speed bearing with damage, an envelope analysis method based on synchronous averaging with sliding narrow band-pass filters is designed and developed for extracting damage features in the low frequency range. The fundamental theory used in the method is derived first. Then, a damage detection signal processing procedure is constructed based on the elaborated theory. The feasibility and advantages of the proposed methodology are validated by numerical simulations as well as the measured data from a wind turbine field example.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眯眯眼的太阳完成签到 ,获得积分10
11秒前
orixero应助科研通管家采纳,获得10
23秒前
Python_Liu完成签到 ,获得积分10
28秒前
Criminology34完成签到,获得积分0
37秒前
量子星尘发布了新的文献求助10
41秒前
wearelulu完成签到,获得积分10
42秒前
automan完成签到,获得积分10
44秒前
WindDreamer完成签到,获得积分0
44秒前
1分钟前
空白格完成签到 ,获得积分10
1分钟前
嘻嘻嘻完成签到 ,获得积分10
1分钟前
月亮啊完成签到 ,获得积分10
1分钟前
单于笑卉完成签到,获得积分10
1分钟前
单于笑卉发布了新的文献求助10
2分钟前
小莨应助火星上映易采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
ding应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
爆米花应助任性学姐采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
杀毒武器胡完成签到,获得积分10
2分钟前
任性学姐发布了新的文献求助10
2分钟前
今后应助任性学姐采纳,获得10
3分钟前
美满尔蓝完成签到,获得积分10
3分钟前
3分钟前
撒旦asd完成签到,获得积分20
3分钟前
上官若男应助Yangqx007采纳,获得10
3分钟前
Henvy完成签到,获得积分10
3分钟前
3分钟前
任性学姐发布了新的文献求助10
4分钟前
4分钟前
坚果完成签到,获得积分20
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739408
求助须知:如何正确求助?哪些是违规求助? 5386143
关于积分的说明 15339719
捐赠科研通 4881969
什么是DOI,文献DOI怎么找? 2624052
邀请新用户注册赠送积分活动 1572745
关于科研通互助平台的介绍 1529540