Synchronous Averaging with Sliding Narrowband Filtering for Low-speed Bearing Fault Diagnosis

窄带 方位(导航) 断层(地质) 控制理论(社会学) 声学 计算机科学 工程类 地质学 电子工程 地震学 物理 人工智能 控制(管理)
作者
Yukun Huang,Kun Wang,Zhenhong Deng,Zhengkun Xue,Baoqiang Zhang,Huageng Luo
出处
期刊:Journal of Sound and Vibration [Elsevier]
卷期号:586: 118503-118503 被引量:1
标识
DOI:10.1016/j.jsv.2024.118503
摘要

The health condition of low-speed rolling bearing, such as the main bearing in wind turbines which bears the heavy dead weight and operates under variable speeds, has a big impact on the safe operation of the machinery. Therefore, damage detection of low-speed bearings plays a key role in the health management of large-scale rotating machinery. However, in popular vibration based bearing damage detection algorithms, due to the fact that the additional vibration features incurred by the low-speed operated bearing damage are typically weak in amplitude and low in frequency contents, the additional responses caused by damage are difficult to be isolated by conventional algorithms. Especially, in the cases of variable speed operations, the smearing effect caused by Fourier transform makes it more difficult to extract the damage features by spectrum analysis based methods. To deal with these issues, we developed a damage detection procedure specially designed for bearings operated at low and variable speeds. According to the dynamic properties of the vibration signals incurred by a low-speed bearing with damage, an envelope analysis method based on synchronous averaging with sliding narrow band-pass filters is designed and developed for extracting damage features in the low frequency range. The fundamental theory used in the method is derived first. Then, a damage detection signal processing procedure is constructed based on the elaborated theory. The feasibility and advantages of the proposed methodology are validated by numerical simulations as well as the measured data from a wind turbine field example.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hkh完成签到,获得积分10
1秒前
那咋了完成签到,获得积分10
1秒前
大个应助谢谢采纳,获得10
2秒前
2秒前
默存完成签到,获得积分10
2秒前
美好的碧萱完成签到,获得积分10
3秒前
Hello应助漫天采纳,获得10
4秒前
cyyf发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
彭于晏应助小胖胖采纳,获得10
5秒前
陈子酒完成签到,获得积分10
5秒前
张欣童666发布了新的文献求助10
6秒前
mhuim发布了新的文献求助10
6秒前
dd36完成签到,获得积分10
7秒前
犹豫的初丹完成签到,获得积分10
7秒前
摆渡人发布了新的文献求助10
8秒前
魔幻安青完成签到,获得积分10
8秒前
华仔应助健康的幻珊采纳,获得10
8秒前
8秒前
9秒前
9秒前
刘钊扬完成签到,获得积分10
9秒前
Horizon完成签到 ,获得积分10
9秒前
bright发布了新的文献求助20
9秒前
二十而耳顺完成签到,获得积分10
10秒前
田様应助遇见馅儿饼采纳,获得10
11秒前
来了完成签到,获得积分10
11秒前
11秒前
11秒前
Neko发布了新的文献求助10
11秒前
勤奋帅帅完成签到,获得积分10
11秒前
ZZX完成签到,获得积分10
11秒前
xixi很困发布了新的文献求助20
11秒前
北辰完成签到,获得积分10
12秒前
sxh发布了新的文献求助30
12秒前
6wt完成签到,获得积分10
12秒前
丘比特应助淡定的含蕊采纳,获得10
13秒前
mont完成签到,获得积分10
13秒前
行云流水完成签到 ,获得积分10
13秒前
害羞的天真完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539472
求助须知:如何正确求助?哪些是违规求助? 4626203
关于积分的说明 14598378
捐赠科研通 4567137
什么是DOI,文献DOI怎么找? 2503807
邀请新用户注册赠送积分活动 1481627
关于科研通互助平台的介绍 1453226