Adaptive mode decomposition method based on fault feature orientation and its application to compound fault diagnosis of planetary gearboxes

断层(地质) 分解 特征(语言学) 方向(向量空间) 模式(计算机接口) 模式识别(心理学) 计算机科学 人工智能 地质学 化学 数学 地震学 几何学 语言学 操作系统 哲学 有机化学
作者
Hongkun Li,Shunxin Cao,Kongliang Zhang,Chen Yang,Wei Xiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad5c89
摘要

Abstract Planetary gearboxes often experience multiple component failures during service, which can accelerate the degradation and failure of industrial equipment. Accurate separation and identification of multiple faults is an important means of ensuring the safe and stable operation of equipment. However, different faults can interact with each other, along with the influence of background noise, making it challenging to accurately extract faults with relatively weak energy among multiple faults. This difficulty leads to the problems of potential misdiagnosis and underdiagnosis. To address this issue, an adaptive mode decomposition method based on fault feature orientation (AMD-FF) is proposed in this paper. Initially, a fault impact indicator (FII) is constructed based on period-weighted kurtosis of envelope spectral and correlated combination negentropy to effectively characterize the impulsiveness and periodicity of fault features. Furthermore, with the objective of maximizing the FII, an adaptive decomposition of the original signal is designed based on blind convolution theory using a finite-impulse response filter group. Subsequently, a variable weight particle swarm optimization is employed to adaptively optimize the key decomposition parameters. Finally, the data of industrial-grade planetary gear transmission test rig are collected to validate the proposed method for compound fault diagnosis of planetary gearboxes. The results indicate that the AFMD-FF can effectively separate and extract compound faults in planetary gearboxes, demonstrating superior fault separation and diagnostic performance compared to the fault mode decomposition (FMD) and adaptive FMD. This method offers a novel approach to diagnosing compound faults in rotating equipment in industrial scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nanfang完成签到 ,获得积分10
1秒前
华仔应助jin1233采纳,获得10
2秒前
研友_LmVqmn完成签到,获得积分10
2秒前
3秒前
3秒前
Lucia发布了新的文献求助10
3秒前
852应助嗯哼采纳,获得10
3秒前
Mz完成签到,获得积分10
4秒前
今后应助幽篁采纳,获得30
5秒前
5秒前
Cyrus2022完成签到,获得积分10
7秒前
7秒前
winni完成签到,获得积分10
8秒前
Grinder发布了新的文献求助10
8秒前
甜滋滋发布了新的文献求助10
9秒前
文档发布了新的文献求助10
9秒前
wuhu完成签到,获得积分20
9秒前
10秒前
天天快乐应助淡定小蜜蜂采纳,获得10
10秒前
oydent完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
Helio完成签到,获得积分20
11秒前
12秒前
12秒前
Yichao发布了新的文献求助10
12秒前
zhuo完成签到,获得积分10
13秒前
Clara应助lhl采纳,获得10
13秒前
爪爪完成签到,获得积分10
14秒前
幸运星完成签到 ,获得积分10
14秒前
李健的小迷弟应助文档采纳,获得10
15秒前
NanNan626完成签到 ,获得积分10
15秒前
15秒前
轻松紫雪发布了新的文献求助10
16秒前
16秒前
大模型应助秋收冬藏采纳,获得10
16秒前
徐丫丫发布了新的文献求助10
16秒前
16秒前
我叫胖子完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160145
求助须知:如何正确求助?哪些是违规求助? 2811106
关于积分的说明 7891067
捐赠科研通 2470194
什么是DOI,文献DOI怎么找? 1315360
科研通“疑难数据库(出版商)”最低求助积分说明 630822
版权声明 602022