Adaptive mode decomposition method based on fault feature orientation and its application to compound fault diagnosis of planetary gearboxes

断层(地质) 分解 特征(语言学) 方向(向量空间) 模式(计算机接口) 模式识别(心理学) 计算机科学 人工智能 地质学 化学 数学 地震学 几何学 语言学 操作系统 哲学 有机化学
作者
Hongkun Li,Shunxin Cao,Kongliang Zhang,Chen Yang,Wei Xiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 106104-106104
标识
DOI:10.1088/1361-6501/ad5c89
摘要

Abstract Planetary gearboxes often experience multiple component failures during service, which can accelerate the degradation and failure of industrial equipment. Accurate separation and identification of multiple faults is an important means of ensuring the safe and stable operation of equipment. However, different faults can interact with each other, along with the influence of background noise, making it challenging to accurately extract faults with relatively weak energy among multiple faults. This difficulty leads to the problems of potential misdiagnosis and underdiagnosis. To address this issue, an adaptive mode decomposition method based on fault feature orientation (AMD-FF) is proposed in this paper. Initially, a fault impact indicator (FII) is constructed based on period-weighted kurtosis of envelope spectral and correlated combination negentropy to effectively characterize the impulsiveness and periodicity of fault features. Furthermore, with the objective of maximizing the FII, an adaptive decomposition of the original signal is designed based on blind convolution theory using a finite-impulse response filter group. Subsequently, a variable weight particle swarm optimization is employed to adaptively optimize the key decomposition parameters. Finally, the data of industrial-grade planetary gear transmission test rig are collected to validate the proposed method for compound fault diagnosis of planetary gearboxes. The results indicate that the AFMD-FF can effectively separate and extract compound faults in planetary gearboxes, demonstrating superior fault separation and diagnostic performance compared to the fault mode decomposition (FMD) and adaptive FMD. This method offers a novel approach to diagnosing compound faults in rotating equipment in industrial scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
519发布了新的文献求助10
刚刚
田様应助Saluzi采纳,获得10
刚刚
端庄断秋发布了新的文献求助10
1秒前
wanci应助哭泣的翠丝采纳,获得10
1秒前
1秒前
星辉斑斓完成签到,获得积分10
1秒前
2秒前
酷酷的盼海完成签到,获得积分10
2秒前
3秒前
b23tian关注了科研通微信公众号
3秒前
宫鹏涛完成签到,获得积分10
3秒前
Jack发布了新的文献求助10
3秒前
3秒前
4秒前
careS发布了新的文献求助30
4秒前
大模型应助贤惠的鼠标采纳,获得10
5秒前
Hollow完成签到,获得积分10
5秒前
5秒前
昵称发布了新的文献求助20
5秒前
6秒前
尊敬的怀绿完成签到,获得积分10
6秒前
bk_tian完成签到,获得积分10
6秒前
6秒前
7秒前
魏芸芸发布了新的文献求助10
7秒前
7秒前
八杯水发布了新的文献求助10
7秒前
可靠的南露完成签到,获得积分10
7秒前
7秒前
万能图书馆应助Issac01采纳,获得10
7秒前
健忘的芷荷完成签到,获得积分10
8秒前
青秋鱼罐头完成签到,获得积分10
8秒前
9秒前
书包王发布了新的文献求助10
9秒前
10秒前
fcyyc完成签到,获得积分10
10秒前
10秒前
无脚鸟完成签到,获得积分10
10秒前
Res_M发布了新的文献求助10
10秒前
知足常乐完成签到 ,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406