Adaptive mode decomposition method based on fault feature orientation and its application to compound fault diagnosis of planetary gearboxes

断层(地质) 分解 特征(语言学) 方向(向量空间) 模式(计算机接口) 模式识别(心理学) 计算机科学 人工智能 地质学 化学 数学 地震学 几何学 语言学 哲学 有机化学 操作系统
作者
Hongkun Li,Shunxin Cao,Kongliang Zhang,Chen Yang,Wei Xiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 106104-106104 被引量:7
标识
DOI:10.1088/1361-6501/ad5c89
摘要

Abstract Planetary gearboxes often experience multiple component failures during service, which can accelerate the degradation and failure of industrial equipment. Accurate separation and identification of multiple faults is an important means of ensuring the safe and stable operation of equipment. However, different faults can interact with each other, along with the influence of background noise, making it challenging to accurately extract faults with relatively weak energy among multiple faults. This difficulty leads to the problems of potential misdiagnosis and underdiagnosis. To address this issue, an adaptive mode decomposition method based on fault feature orientation (AMD-FF) is proposed in this paper. Initially, a fault impact indicator (FII) is constructed based on period-weighted kurtosis of envelope spectral and correlated combination negentropy to effectively characterize the impulsiveness and periodicity of fault features. Furthermore, with the objective of maximizing the FII, an adaptive decomposition of the original signal is designed based on blind convolution theory using a finite-impulse response filter group. Subsequently, a variable weight particle swarm optimization is employed to adaptively optimize the key decomposition parameters. Finally, the data of industrial-grade planetary gear transmission test rig are collected to validate the proposed method for compound fault diagnosis of planetary gearboxes. The results indicate that the AFMD-FF can effectively separate and extract compound faults in planetary gearboxes, demonstrating superior fault separation and diagnostic performance compared to the fault mode decomposition (FMD) and adaptive FMD. This method offers a novel approach to diagnosing compound faults in rotating equipment in industrial scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
西乡塘塘主完成签到,获得积分10
2秒前
所所应助南橘采纳,获得10
2秒前
yingziiii完成签到,获得积分10
3秒前
Hello应助瞿寒采纳,获得10
3秒前
4秒前
4秒前
K.I.D发布了新的文献求助10
5秒前
5秒前
d_ly完成签到,获得积分20
6秒前
李瑞康发布了新的文献求助10
6秒前
小蘑菇应助bae采纳,获得10
6秒前
yyer完成签到,获得积分10
7秒前
英勇飞机发布了新的文献求助10
7秒前
7秒前
冷妹君发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
龙龙龙完成签到,获得积分10
8秒前
10秒前
卓卓发布了新的文献求助10
11秒前
11秒前
dshihb发布了新的文献求助30
12秒前
12秒前
Laoxing258完成签到,获得积分10
14秒前
14秒前
zhang_y2发布了新的文献求助10
14秒前
Orange应助成就梦松采纳,获得10
15秒前
ding应助samllcloud采纳,获得10
15秒前
将寻发布了新的文献求助30
16秒前
刘老板发布了新的文献求助10
16秒前
Leo应助重要的小猫咪采纳,获得10
16秒前
17秒前
17秒前
落后的成仁完成签到,获得积分20
18秒前
大方万仇完成签到 ,获得积分10
18秒前
mr_wang发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355086
求助须知:如何正确求助?哪些是违规求助? 4487060
关于积分的说明 13968836
捐赠科研通 4387749
什么是DOI,文献DOI怎么找? 2410553
邀请新用户注册赠送积分活动 1403023
关于科研通互助平台的介绍 1376743