Adaptive mode decomposition method based on fault feature orientation and its application to compound fault diagnosis of planetary gearboxes

断层(地质) 分解 特征(语言学) 方向(向量空间) 模式(计算机接口) 模式识别(心理学) 计算机科学 人工智能 地质学 化学 数学 地震学 几何学 语言学 操作系统 哲学 有机化学
作者
Hongkun Li,Shunxin Cao,Kongliang Zhang,Chen Yang,Wei Xiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 106104-106104 被引量:7
标识
DOI:10.1088/1361-6501/ad5c89
摘要

Abstract Planetary gearboxes often experience multiple component failures during service, which can accelerate the degradation and failure of industrial equipment. Accurate separation and identification of multiple faults is an important means of ensuring the safe and stable operation of equipment. However, different faults can interact with each other, along with the influence of background noise, making it challenging to accurately extract faults with relatively weak energy among multiple faults. This difficulty leads to the problems of potential misdiagnosis and underdiagnosis. To address this issue, an adaptive mode decomposition method based on fault feature orientation (AMD-FF) is proposed in this paper. Initially, a fault impact indicator (FII) is constructed based on period-weighted kurtosis of envelope spectral and correlated combination negentropy to effectively characterize the impulsiveness and periodicity of fault features. Furthermore, with the objective of maximizing the FII, an adaptive decomposition of the original signal is designed based on blind convolution theory using a finite-impulse response filter group. Subsequently, a variable weight particle swarm optimization is employed to adaptively optimize the key decomposition parameters. Finally, the data of industrial-grade planetary gear transmission test rig are collected to validate the proposed method for compound fault diagnosis of planetary gearboxes. The results indicate that the AFMD-FF can effectively separate and extract compound faults in planetary gearboxes, demonstrating superior fault separation and diagnostic performance compared to the fault mode decomposition (FMD) and adaptive FMD. This method offers a novel approach to diagnosing compound faults in rotating equipment in industrial scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顺顺黎黎发布了新的文献求助10
刚刚
伶俐的语蕊完成签到,获得积分20
1秒前
1秒前
叶许完成签到 ,获得积分10
1秒前
1秒前
盛世嫡妃发布了新的文献求助10
1秒前
领导范儿应助1234采纳,获得20
1秒前
3秒前
踏实十三发布了新的文献求助10
3秒前
Akim应助mz采纳,获得10
3秒前
董先生发布了新的文献求助10
3秒前
蚊香液发布了新的文献求助10
3秒前
鲸鱼发布了新的文献求助10
3秒前
3秒前
是希希啊a发布了新的文献求助10
4秒前
FashionBoy应助栗子采纳,获得10
4秒前
ky幻影完成签到,获得积分10
4秒前
dddd发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
科研通AI6应助里昂采纳,获得30
4秒前
5秒前
枯草芽孢完成签到,获得积分10
5秒前
li完成签到,获得积分20
5秒前
赘婿应助Spike采纳,获得10
5秒前
饭饭大王完成签到,获得积分10
5秒前
SY发布了新的文献求助10
6秒前
6秒前
6秒前
诚心寄灵完成签到,获得积分10
7秒前
7秒前
Halari发布了新的文献求助10
7秒前
7秒前
zoe11完成签到,获得积分10
7秒前
7秒前
FlipFlops发布了新的文献求助10
8秒前
我的miemie发布了新的文献求助10
9秒前
小木完成签到 ,获得积分10
9秒前
逢投必中完成签到 ,获得积分10
9秒前
李爱国应助俭朴的雨安采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482