催化作用
范围(计算机科学)
镁
产量(工程)
计算机科学
化学
对映选择合成
组合化学
生化工程
有机化学
材料科学
工程类
冶金
程序设计语言
作者
Paulina Baczewska,Michał Kulczykowski,Bartosz K. Zambroń,Joanna A. Jaszczewska‐Adamczak,Zbigniew Pakulski,Rafał Roszak,Bartosz A. Grzybowski,Jacek Młynarski
标识
DOI:10.1002/anie.202318487
摘要
Organic-chemical literature encompasses large numbers of catalysts and reactions they can effect. Many of these examples are published merely to document the catalysts' scope but do not necessarily guarantee that a given catalyst is "optimal"-in terms of yield or enantiomeric excess-for a particular reaction. This paper describes a Machine Learning model that aims to improve such catalyst-reaction assignments based on the carefully curated literature data. As we show here for the case of asymmetric magnesium catalysis, this model achieves relatively high accuracy and offers out of-the-box predictions successfully validated by experiment, e.g., in synthetically demanding asymmetric reductions or Michael additions.
科研通智能强力驱动
Strongly Powered by AbleSci AI