已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Investigating quantitative approach for microalgal biomass using deep convolutional neural networks and image recognition

卷积神经网络 生物量(生态学) 残余物 人工智能 稳健性(进化) 螺旋藻(膳食补充剂) 生物系统 模式识别(心理学) 计算机科学 藻类 人工神经网络 一般化 环境科学 数学 生物 算法 植物 原材料 农学 生态学 数学分析 生物化学 基因
作者
Peng Yang,S. Yao,Aoqiang Li,Feifei Xiong,Guangwen Sun,Zhouzhou Li,Huaichun Zhou,Yang Chen,Xun Gong,Fanke Peng,zhuolin Liu,Chuxuan Zhang,Zeng Jian
出处
期刊:Bioresource Technology [Elsevier]
卷期号:403: 130889-130889 被引量:1
标识
DOI:10.1016/j.biortech.2024.130889
摘要

The effective monitoring of microalgae cultivation is crucial for optimizing their energy utilization efficiency. In this paper, a quantitative analysis method, using microalgae images based on two convolutional neural networks, EfficientNet (EFF) and residual network (RES), is proposed. Suspension samples prepared from two types of dried microalgae powders, Rhodophyta (RH) and Spirulina (SP), were used to mimic real microalgae cultivation settings. The method's prediction accuracy of the algae concentration ranges from 0.94 to 0.99. RH, with a distinctively pronounced red-green-blue value shift, achieves a higher prediction accuracy than SP. The prediction results of the two algorithms were significantly superior to those of a linear regression. Additionally, RES outperforms EFF in terms of its generalization ability and robustness, which is attributable to its distinct residual block architecture. The RES provides a viable approach for the image-based quantitative analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅长颈鹿完成签到,获得积分10
刚刚
打打应助阿枫采纳,获得10
1秒前
1秒前
西蓝花战士完成签到 ,获得积分10
4秒前
Cry_Man完成签到 ,获得积分10
5秒前
潇潇雨歇发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
琪琪七发布了新的文献求助10
11秒前
想不出来完成签到 ,获得积分10
13秒前
纯原周边发布了新的文献求助10
13秒前
15秒前
xiao完成签到,获得积分10
15秒前
16秒前
lllroy完成签到,获得积分10
17秒前
依琪完成签到 ,获得积分10
18秒前
周中梁完成签到 ,获得积分10
18秒前
zhenghangbin发布了新的文献求助10
19秒前
20秒前
olekravchenko应助李晓萌采纳,获得10
20秒前
第五个季节完成签到,获得积分20
21秒前
琪琪七完成签到,获得积分20
22秒前
潇潇雨歇发布了新的文献求助10
23秒前
XIEQ发布了新的文献求助10
24秒前
虚幻的楼房完成签到 ,获得积分10
26秒前
执着的海发布了新的文献求助10
26秒前
28秒前
30秒前
LIUDEHUA完成签到,获得积分10
30秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
小马甲应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
31秒前
blackbird007完成签到,获得积分10
33秒前
雪白阑悦发布了新的文献求助10
33秒前
Xiwenwenne关注了科研通微信公众号
33秒前
完美世界应助自觉的绿蝶采纳,获得10
33秒前
LIUDEHUA发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573156
求助须知:如何正确求助?哪些是违规求助? 4659297
关于积分的说明 14724290
捐赠科研通 4599114
什么是DOI,文献DOI怎么找? 2524112
邀请新用户注册赠送积分活动 1494675
关于科研通互助平台的介绍 1464681