作者
Yujun Xie,Luyao An,Xiaoyan Wang,Yajie Ma,Alamusi Bayoude,Xinxin Fan,Boyang Yu,Renshi Li
摘要
Dioscoreae Rhizoma, a kind of Chinese yam, is a medicinal and edible plant used in China for strengthening the spleen and stomach. However, there is a lack of modern pharmacology studies regarding its anti-gastric injury activity. This study aimed to investigate the phytochemical composition of Chinese yam aqueous extract (CYW) and evaluate its gastroprotective effects against ethanol-induced gastric injury in vitro and in vivo. The active components of CYW were identified using HPLC-QTOF-MS/MS in combination with the GNPS molecular networking and network pharmacology. In vitro studies were performed in the RAW264.7 / GES-1 cell coculture system. In vivo study, mice were treated with CYW (0.31, 0.63, and 3.14 g/kg BW, orally) for 14 days, followed by a single oral dose of ethanol (10 mL/kg BW) to induce gastric injury. The biochemical, inflammation and oxidative stress markers were analyzed using commercial kits. Histopathology was used to assess the degree of gastric injury. Gene and protein expressions were studied using RT-qPCR and western blotting, respectively. CYW significantly restored the levels of SOD, GPx and CAT, and reduced the MDA content. Further analyses showed that CYW significantly alleviated the gastric oxidative stress by inhibiting the inflammation via decreasing p-NF-κB and p-IκB-α expression levels and inhibiting the generation of IL-6, TNF-α, and IL-1β. At the same time, the fraction remarkably upregulated Bcl-2, downregulated Bax and increased growth factor secretion, thereby prevented gastric mucous cell. Besides, The combination of HPLC-QTOF-MS/MS, GNPS molecular networking analysis, and network pharmacology demonstrated that linoleic acid, 3-acetyl-11-keto-beta-boswellic acid, adenosine, aminocaproic acid, tyramine, DL-tryptophan, cycloleucine, lactulose, melibiose, alpha-beta-trehalose, and sucrose would be the main active compounds of CYW against ethanol-induced gastric injury. This study showed that CYW is potentially rich source of anti-oxidant and anti-inflammatory bioactive compounds. It showed efficacy against ethanol-induced gastric injury by inhibiting inflammation, oxidative stress, and apoptosis in the stomach. The results of the current work indicate that Dioscoreae Rhizoma could be utilized as a type of natural resource for production of new medicine and functional foods to prevent and/or ameliorate ethanol-induced gastric injury.